Оценка уровня углекислого газа в помещении с кондиционером. Сколько вешать в граммах: нормы CO2 Пластиковые окна без клапанов — источник повышенного уровня СО2 в квартире


Воздух состоит, как известно, из молекулярного азота (78%), молекулярного кислорода (21%), аргона (1%), небольшого количества паров воды и еще ряда веществ, содержание которых измеряется сотыми и тысячными долями процента. Среди них и углекислый газ, или, как его предпочитают называть ученые, - диоксид углерода (CO 2). Для удобства содержание CO 2 в воздухе оценивают не в процентах (сотых долях), а в миллионных долях, которые обозначают латинскими буквами ppm (part per million - частиц на миллион). Содержание углекислого газа в атмосфере Земли за всю историю ее существования колебалось в довольно широких пределах (см.: 300 миллионов лет назад углекислого газа в атмосфере было гораздо больше, чем сейчас). Сейчас его концентрация оценивается в 380–390 ppm (или 0,038–0,039%), хотя еще 50 лет назад она составляла всего 310–320 ppm. Основная причина роста содержания углекислого газа в атмосфере за последнее столетие - выбросы его при сжигании ископаемого топлива (нефти, угля, газа), а также сведение лесов.

Само существование жизни на Земле теснейшим образом связано с наличием в атмосфере углекислого газа. Во-первых, углекислый газ, наряду с парами воды и метаном, создает парниковый эффект - обеспечивает сохранение тепла, которое излучает нагретая солнечными лучами земля. Если бы в атмосфере не было парниковых газов, то средняя годовая температура воздуха у поверхности Земли была бы не +15°C, как сейчас, а –23°C.

Во-вторых, углекислый газ - это источник углерода для всех зеленых растений, планктонных микроскопических водорослей и цианобактерий. Используя энергию солнечного света, все эти организмы в ходе фотосинтеза производят из углекислого газа и воды органическое вещество, а в качестве побочного продукта выделяют кислород. Суть процесса фотосинтеза отражается простым уравнением:

CO 2 + H 2 O + энергия → (CH 2 O) + O 2 ,

где (CH 2 O) - обобщенная формула органического вещества.

Однако если в ходе фотосинтеза углекислый газ связывается (соответственно, изымается из атмосферы), то в ходе другого процесса - дыхания - он снова выделяется:

(CH 2 O) + O 2 → CO 2 + H 2 O + энергия .

В современной биосфере подавляющее большинство организмов получают необходимую им энергию именно в процессе аэробного дыхания - окисления органического вещества кислородом. Таким образом, жизнедеятельность множества организмов сама по себе оказывается важным источником углекислого газа. Наибольший вклад вносит дыхание грибов и бактерий, разлагающих отмершее вещество растительных тканей, а также дыхание самих растений (в первую очередь корней).

Сейчас ученые научились очень точно измерять концентрацию углекислого газа в воздухе. В самых разных точках Земного шара, от Аляски до Южного полюса существуют специальные станции, на которых в течение круглого года ведутся наблюдения за всеми изменениями содержания CO 2 . Собранные данные позволили построить трёхмерный график, показывающий зависимость количества углекислого газа в воздухе сразу от двух параметров - географической широты расположения станции и времени года (см. рис. 1).

Задача

Рассмотрите внимательно приведенный выше график сезонных изменений содержания углекислого газа в атмосфере на разных широтах. Обратите внимание на то, что для Северного полушария, особенно - области высоких его широт, характерны необычайно сильные колебания в содержании CO 2 . Максимальные значения отмечаются весной - в апреле–мае, а минимальные - осенью, в сентябре–октябре. В Южном полушарии подъемы и спады количества CO 2 также наблюдаются, но в противофазе тому, что происходит в Северном полушарии, а главное - с совсем незначительной амплитудой.
Задание. Попробуйте объяснить полученную картину. Из-за чего так сильно колеблется содержание углекислого газа в течение года и почему в Северном полушарии размах колебаний значительно больше, чем в Южном?

Если вам трудно разобраться в трёхмерном графике, приведенным выше, посмотрите еще на один (рис. 2). Он ориентирован по-другому: Южное полушарие ближе к вам, а Северное - дальше. Это другие годы, но характер сезонных изменений на разных широтах тот же самый: в Южном полушарии они выражены очень слабо, в Северном - сильно.


Подсказка 1

В качестве подсказки советую взять глобус (лучше даже сломанный, отвалившийся от подставки) и посмотреть на него внимательно со стороны Северного полюса и со стороны Южного. Ниже приведена соответствующая пара рисунков (рис. 3). Вам нужно понять, чем различаются Северное и Южное полушария и как эти различия могут сказаться на процессах поглощения и выделения углекислого газа.

Подсказка 2

Посмотрите на график сезонных изменений содержания углекислого газа, полученный за последние годы на астрофизической обсерватории Мауна-Лоа на острове Гавайи (рис. 4). Хотя это всего 20° с. ш., колебания концентрации CO 2 выражены очень четко. Самая высокая концентрация отмечается в мае, самая низкая - в сентябре-октябре.

Решение

Наверное вы обратили внимание на то, что Северное полушарие - преимущественно континентальное (бо льшую часть его занимает суша), а Южное - океаническое (в центре - покрытая льдом Антарктида, а вокруг - огромное пространство океана). Можно предположить далее, что суша и океан различаются по интенсивности процессов связывания и выделения углекислого газа. Из графика сезонных изменений концентрации CO 2 , полученным на Мауна-Лоа (рис. 4), следует, что в летние месяцы в Северном полушарии количество этого газа сильно снижается (минимум достигается осенью), а в зимние месяцы растет и достигает максимума к весне. Теперь нетрудно догадаться, что уменьшение содержания углекислого газа летом происходит благодаря деятельности растений, а именно - фотосинтезу, в ходе которого CO 2 потребляется. Рост растений, увеличение массы листьев, стеблей и корней происходит за счет углерода, который был поглощен ими из воздуха в форме углекислого газа.

Если за изъятие углекислого газа из атмосферы отвечает фотосинтез, то за его поступление - дыхание всех организмов, в первую очередь бактерий и грибов, разлагающих органическое вещество отмерших растений. Дыхание происходит и весной, и летом, и осенью, а с небольшой интенсивностью - и зимой, по крайней мере в тех местах, где сохраняются положительные температуры. Период вегетации (активного роста растений) в умеренных и высоких широтах ограничен концом весны - началом лета. Но именно тогда количество углекислого газа, связываемого быстро растущими растениями, существенно превосходит количество его, выделяемое в процессе дыхания всех организмов. Поэтому мы и наблюдаем в это время снижение концентрации углекислого газа в воздухе. Затем фотосинтез резко ослабевает, а дыхание всех организмов продолжается, что и приводит к накоплению CO 2 . Еще один дополнительный источник углекислого газа, работающий круглогодично, - это сжигание человеком ископаемого топлива.

Здесь читатель вправе заметить, что процессы фотосинтеза и дыхания имеют место не только на суше, но и в океане. Почему же над океаном мы не наблюдаем столь значительных изменений в содержании CO 2 в воздухе? Ведь наиболее активный фотосинтез происходит в море также весной и в начале лета, когда становится тепло, а главное - светло, и когда в воде содержится еще достаточно много элементов минерального питания (азота и фосфора в доступной форме). На самом деле сезонные колебания концентрации углекислого газа в Южном, океаническом, полушарии также существуют, но протекают они, естественно, в противофазе тому, что происходит в Северном. Удивительно, почему у них такая небольшая амплитуда. Здесь могут работать несколько механизмов.

Во-первых, океан (даже его верхние слои) обладает огромной теплоемкостью, что сглаживает сезонные колебания температуры в сравнении с происходящим на суше. Во-вторых, в воде углекислый газ хорошо растворяется (в холодной лучше, чем в теплой) - то есть существует физико-химический механизм связывания CO 2 ; правда, поверхностные слои океана могут и отдавать CO 2 атмосфере в случае низкого его там парциального давления. В-третьих, и это, пожалуй, самое главное - величина чистой первичной продукции, то есть количество органического вещества, образованного в ходе фотосинтеза автотрофными организмами, в расчете на единицу площади для суши примерно в 2,5 раза выше, чем для океана. Фитопланктон не может обеспечить изъятие из окружающей среды такого количества CO 2 , которое изымает наземная растительность умеренных и северных широт. Колебания в содержании углекислого газа, обнаруживаемые обсерваторией на Мауна-Лоа, определяются прежде всего сезонностью в развитии растительности Евразии и Северной Америки.

Послесловие

Вообще-то, воздушная среда в сравнении с водной очень подвижна. Невольно возникает вопрос: почему перемешивание воздушных масс не выравнивает содержание углекислого газа в атмосфере Земли? Здесь необходимо напомнить, что воздух легко и быстро перемещается в широтном направлении, но не в меридиональном. Поэтому на Гавайских островах можно наблюдать результаты сезонного развития растительности на удаленных материках. Но в направлении «север - юг» мы видим сохранение серьезных различий в содержании CO 2 на разных широтах. Мешает меридиональному переносу ячеистая структура воздушной циркуляции. Воздух в районе экватора нагревается сильнее всего, поэтому он поднимается там вверх, расширяясь, движется к северу и югу, постепенно охлаждается и опускается в обоих полушариях к земле примерно на 30°. Потом этот охлажденный воздух движется у поверхности земли к экватору и замыкает круговорот. Таким образом формируются ячейки Гадлея , названные по имени описавшего их английского ученого XVIII века Джорджа Гадлея (George Hadley). Движение воздушных масс в каждой из этих ячеек заставляет двигаться соседние воздушные массы вниз, а затем к северу и югу (в зависимости от полушария). Это уже ячейки Феррела , названные в честь американского метеоролога XIX века Уильяма Феррела (William Ferrel). Наличие подобной ячеистой структуры циркуляции сильно препятствуют перемешиванию воздушных масс в меридиональном направлении, но не создает препятствий для движения по широте.

Данная информация предназначена для специалистов в области здравоохранения и фармацевтики. Пациенты не должны использовать эту информацию в качестве медицинских советов или рекомендаций.

Основы СО 2 мониторинга

Практическое руководство (по материалам фирмы Datex)
Новосибирск 1995 г.

1.Введение 2

2.Что такое капнограмма. 3

  • Что такое PetСО 2 4
  • 3.Как образуется СО 2 в выдыхаемом воздухе 4

  • Отличие PetCO 2 от напряжения СО 2 в артериальной крови 5
  • Небольшое артериально-альвеолярное различие (aAДСО 2) 5
  • Основные причины увеличения аАДСО 2 5
  • 4.Почему измеряется PetCO 2 6

  • Клинические преимущества СО 2 мониторинга 6
  • Использование PetCO 2 для контроля вентиляции 7
  • Физиологические факторы, управляющие удалением СО 2 7
  • Что такое альвеолярная вентиляция 7
  • 5.Диагностика гипер- и гиповентиляции 7

  • Нормокапния и нормовентиляция 8
  • Гипокапния и гипервентиляция 8
  • Гиперкапния и гиповентиляция 9
  • 6.Интерпретация капнограммы и тренда СО 2 9

    7.Практическое руководство по СО2 мониторингу 15

  • Основное правило для размещения отборника газа 15
  • Удаление газа с выхода монитора 15
  • Мониторинг при слабых воздушных потоках 15
  • 8.СО2 мониторинг в посленаркозный период 16

    Приложение 18

    Практическое руководство составлено по материалам фирмы Datex научно-производственной фирмой ЗАО “ЛАСПЕК”

    Перевод и компьютерная верстка - Д.Е. Грошев
    Редактор к.м.н. - О.В. Гришин.

    1 Введение.

    Эти методические рекомендации рассчитаны на анестезиологов и реаниматологов, не знакомых с СО 2 -мониторингом, и имеют целью в простой форме ответить на вопрос: "зачем и как производится СО 2 -мониторинг?”. Освоение нескольких основных принципов СО 2 -мониторинга обеспечивает врача богатой информацией о состоянии пациента и функционировании наркозной аппаратуры. Список литературы, рекомендуемой для более подробного изучения, приведен в разделе "Справочная литература".

    Проведение СО 2 -мониторинга в анестезиологии и реаниматологии считается очень важным и даже необходимым условием эффективного наблюдения за больным с управляемым или нарушенным дыханием, а также с нормальным дыханием при угрозе его нарушения. Быстрый рост популярности СО 2 -мониторинга отражает его значение в обеспечении безопасности пациента. Многие потенциально опасные ситуации с его помощью обнаруживаются на самых ранних этапах развития, предоставляя врачу достаточное время для анализа и исправления развивающегося критического состояния. Кроме того мониторирование значения концентрации СО 2 в конце выдоха (PetCO 2) и анализ его тренда дают наиболее объективную диагностическую информацию о состоянии пациента при наркозе.

    В таблице приведена оценка относительного значения ряда методик для выявления критических ситуаций. (Whitcer C. et al. Anasthetic mishaps and the cost of monitoring: a proposed standart for monitoring equipment. J. Clin Monit 1988; 4:5-15p.).


    Пульсоксиметр

    Капнограф

    Спирометр

    Тонометр

    Фонендоскоп

    Галометр

    Анализатор О 2

    Термометр

    2.Что такое капнограмма.

    Кривая изменения концентрации СО 2 во времени называется капнограммой. Она отражает различные стадии выдоха. Капнограмма является важным диагностическим средством, так как ее форма практически одинакова у здоровых людей. Поэтому следует анализировать любое изменение формы капнограммы.

    *Мертвым пространством называется часть воздушных путей, где не происходит газообмен. В случае аппаратного мониторинга CO 2 в формировании капнограммы выдоха принимают участие следующие типы мертвого пространства. Механическое или аппаратное мертвое пространство - состоит из эндотрахеальной трубки и соединительных шлангов. Анатомическое мертвое пространство - составляют трахея и бронхи. Альвеолярное мертвое пространство - составляет часть дыхательных путей в которой не происходит газообмен, хотя они и вентилируются.

    Что такое PetCO 2 .

    Максимальная концентрация СО 2 в конце спокойного выдоха PetCO 2 (end-tidal CO 2) очень тесно связана с альвеолярной концентрацией СО 2 , так как она регистрируется во время поступления воздуха из альвеол.

    3. Как образуется СО 2 в выдыхаемом воздухе.

    Углекислый газ (СО 2) выделяется всеми клетками во всех тканях организма, как продукт метаболизма. СО 2 является конечным продуктом процесса окисления глюкозы, и должен постоянно удаляться из тканей.

    Из клеток СО 2 диффундирует в капиллярную кровь, так как в ней концентрация СО 2 поддерживается более низкой. Из капиллярной крови СО 2 далее транспортируется по венам от периферии к правому предсердию.

    Сердце прокачивает венозную кровь через малый круг кровообращения к легким где происходит газообмен.

    Легкие состоят приблизительно из 300 миллионов альвеол, в которых кровь насыщается кислородом при легочном кровообращении. Стенки альвеол являются по существу очень тонкими мембранами (с общей площадью поверхности около 100м 2), позволяющими газам легко диффундировать между легочной кровью и альвеолярным воздухом.

    СО 2 диффундирует из крови в альвеолярное пространство. При дыхании (или искусственной вентиляции), концентрация СО 2 в альвеолах постоянно сохраняется ниже, чем в капиллярной крови легких. При вдохе “свежий” воздух поступает в легкие и смешивается с альвеолярным, слегка снижая альвеолярную концентрацию СО 2 . При выдохе СО 2 удаляется из организма. Газ, выходящий в конце выдоха, практически полностью соответствует альвеолярному газу.

    На протяжении выдоха воздух покидает различные участки легких, смешиваясь так, что СО 2 -монитор измеряет только усредненную концентрацию СО 2 . Диффузия СО 2 на альвеолярном уровне является непрерывным процессом. На капнограмме этот процесс отражается только в последней фазе выдоха. В других фазах наблюдается значительная динамика капнограммы, так как она отражает концентрацию СО 2 как во вдыхаемом, так и в выдыхаемом воздухе.

    Сравнительный анализ артериальной крови и альвеолярного воздуха показывает, что величина PetCO 2 довольно близко отслеживает уровень напряжения СО 2 в крови (РаСО 2), но все же они не равны. В норме PetCO 2 на 1-3 мм рт.ст. ниже чем РаСО 2 . Однако у пациентов с легочной патологией различия могут быть значительно большими. Причины этого сложные и выявление увеличения этого различия дает нам дополнительный диагностический параметр: артериально-альвеолярное различие (аАDСО 2). Фактически аАDСО 2 может рассматриваться как количественный показатель альвеолярного мертвого пространства, поэтому значительные его изменения должны исследоваться дополнительно.

    Небольшое артериально-альвеолярное различие.

    Артериально-альвеолярное различие является результатом особенностей процессов вентиляции и перфузии легочных альвеол. Даже у здорового пациента вентиляционно-перфузионное отношения отличаются в разных участках легких. При наркозе несоответствие вентиляции и перфузии обычно слегка возрастает, однако обычно это не имеет клинического значения.

    Основные причины увеличения аАДСО 2 .

    Снижение уровня газообмена происходит в той части респираторных отделов легких, которые не имеет достаточной перфузии, но тем не менее хорошо вентилируется. При выдохе воздух из этих участков легких будет смешиваться с обогащенным СО 2 альвеолярным воздухом из остальных участков легких, уменьшая PetCO 2 . При этом aADCО 2 будет увеличено. Такая вентиляция называется вентиляцией альвеолярного мертвого пространства.

    Возможными причинами вызывающими увеличение аАСО 2 являются:

      положение пациента (положение на боку)

      легочная гипоперфузия

      легочная тромбоэмболия.

    Рисунок А иллюстрирует эффект вентиляции альвеолярного мертвого пространства. В половине легких нет перфузии и, следовательно, газообмена. При выдохе альвеолярный газ смешивается и результирующая концентрация PetCO 2 будет в два раза меньше, чем РаСО 2 в крови. Для сравнения рисунок В иллюстрирует идеальную ситуацию, когда перфузия происходит во всем объеме легких и PetCO 2 =РАСО 2 =РаСО 2 .

    4. Почему измеряется PetCO 2 .

    СО 2 мониторинг дает информацию как о состоянии пациента, так и о системе обеспечения ИВЛ. Так как концентрация СО 2 зависит от многих факторов, она редко является достаточной для постановки специфического диагноза. Однако мониторирование СО 2 с быстродействующей индикацией и отображением концентрации СО 2 в каждом выдохе обеспечивает достаточный запас времени для принятия необходимых мер по исправлению ситуации.

    Клинические преимущества СО 2 мониторинга.

    В условиях стабильного состояния пациента (ИВЛ в сочетании с нормальной гемодинамикой) концентрация СО 2 тесно связана с изменением напряжения СО 2 в крови и, следовательно, является неинвазивным методом контроля РаСО 2 . Выделение СО 2 - величина довольно стабильная, поэтому резкие изменения PetCO 2 обычно отражают либо изменения кровообращения в малом круге (например легочную эмболию), либо легочной вентиляции (например отсоединение трубки или избыточная ИВЛ - гипервентиляция).

    Использование мониторинга СО 2 позволяет:

    • Быстро определить правильность интубации трахеи.
    • Быстро выявить нарушения в воздушном тракте (коннектор интубационной трубки, интубационная трубка, дыхательные пути) или в системе подачи воздуха (аппарат ИВЛ).

      Объективно, непрерывно, неинвазивно контролировать адекватность вентиляции.

      Распознавать нарушения в газообмене, легочном кровообращении и метаболизме.

      Обеспечивает контроль безопасного использования малопотоковых наркозных методик с присущим им экономичным расходом ингаляционных анестетиков.

      Уменьшает необходимость в частых рутинных анализах газа крови, так как тренд PetCO 2 отражает тренд РаСО 2 . Газоанализ крови становится необходим в случаях значимого отклонения тренда PetCO 2 .

    Общепринятые термины мониторинга СО 2

    “капно” - означает уровень СО 2 при выдохе(от греческого “kapnos” курить);“гипер” - значит слишком много; “гипо” - значит слишком мало.

    Использование PetCO 2 для контроля вентиляции.

    В норме при спокойном естественном дыхании газообменная функция легких обеспечивает парциальное давление СО 2 в крови (РаСО 2) около 40 мм рт.ст. Это происходит путем регулирования частоты и глубины дыхания. При увеличении выделения СО 2 (например, при физических нагрузках) пропорционально возрастает частота и глубина дыхания. Во время наркоза с применением мышечных релаксантов, анестезиолог должен обеспечить надлежащий уровень вентиляции. Обычно этот уровень оценивается путем расчета необходимой вентиляции по номограммам. Гораздо более эффективный способ контроля адекватной вентиляции основан на мониторировании СО 2 .

    Физиологические факторы, управляющие удалением СО 2 .

    Удаление СО 2 зависит от 3-х факторов: скорости метаболизма, состояния системы легочного кровообращения и состояния системы альвеолярной вентиляции.

    Необходимо помнить, что эти 3 фактора взаимосвязаны. Изменение кислотно-основного баланса (или состояния КОС), вызванное различными причинами, может так же влиять на удаление СО 2 .

    Опыт диагностики различных критических ситуаций во время ИВЛ приходит довольно быстро. Так, если стационарное значение СО 2 возрастает при постоянной вентиляции, изменения в PetCO 2 обычно возникают из-за изменения в легочном кровообращении. При этом следует обратить внимание на изменения метаболизма или КОС.

    В процессе наркоза, скорость метаболизма обычно меняется слабо (основным исключением является редкий случай злокачественной гипертермии, который вызывает резкий рост PetCO 2 .)

    Что такое альвеолярная вентиляция.

    Когда уровень вентиляции устанавливается, поддерживая стабильное и в пределах нормы PetCO 2 , то нет необходимости проводить какие-либо расчеты. Вместе с тем, чтобы быть готовым к любой ситуации, полезно знать особенности легочной вентиляции. Как уже говорилось, часть воздуха при дыхании не достигает альвеол и остается в механическом (соединительный коннектор, клапанная коробка, эндотрахеальная трубка) и анатомическом (трахея, бронхиальное дерево) мертвом пространстве, где газообмен не происходит. Чтобы рассчитать объем альвеолярной вентиляции в л/мин, который собственно и обеспечивает газообмен в легких, необходимо вычесть объем общего мертвого пространства из дыхательного объема. Умножив объем воздуха, проникающего в альвеолярные пространства, на частоту дыхания, можно получить альвеолярную минутную вентиляцию - показатель эффективной вентиляции.

    5. Диагностика гипер- и гиповентиляции.

    После начала наркоза и проведения интубации трахеи, анестезия обычно поддерживается системой искусственной вентиляции в стационарном состоянии выделения СО 2 . Заметим, что в течении продолжительной операции (более 1.5 часов), из-за угнетающего действия анестетиков и развивающейся гипотермии, слегка снижается метаболизм пациента и наблюдается постепенное уменьшение PetCO 2

    Нормокапния и нормовентиляция.

    Альвеолярная вентиляция обычно устанавливается так, чтобы обеспечить нормокапнию - то есть PetCO 2 должно находиться в диапазоне 4.8 - 5.7 % (36 -43 мм рт.ст.). Такая вентиляция называется нормовентиляцией, так как она характерна для здоровых людей. Иногда альвеолярную вентиляцию при ИВЛ устанавливают с легкой гипервентиляцией (PetCO 2 4-5%, 30-38 мм рт.ст.).

    Преимущества нормовентиляции.

    При поддержании нормовентиляции гораздо легче распознается развитие критических ситуаций: нарушения альвеолярной вентиляции, кровообращения или метаболизма. Спонтанное дыхание восстанавливается более легко. Кроме того, восстановление в посленаркозном периоде происходит гораздо быстрее.

    Гипокапния и гипервентиляция.

    Уровень PetCO 2 ниже 4.5% (34 мм.рт.ст.) называется гипокапнией. При наркозе наиболее частым случаем гипокапнии является слишком высокая альвеолярная вентиляция (гипервентиляция).

    В после-наркозный период гипокапния при спонтанном дыхании пациента может быть результатом гипервентиляции вызванной страхом, болью или развивающимся шоком.

    Недостатки длительной гипервентиляции.

    К сожалению до сих пор распространенной практикой при ИВЛ является гипервентиляция пациента, которая по общепринятому мнению необходима для обеспечения адекватной оксигенации и даже для углубления наркоза. Однако современные лекарственные средства и способы мониторинга могут обеспечить лучшую оксигенация и анестезию без гипервентиляции "на всякий случай".

    Гипервентиляция имеет достаточно серьезные недостатки:

    вазоконстрикция, приводящая к снижению коронарного и церебрального кровотока;

    избыточный дыхательный алкалоз;

    угнетение дыхательных центров;

    Все эти факторы приводят к более трудному и продолжительному восстановлению в посленаркозный период.

    Гиперкапния и гиповентиляция.

    Превышение PetCO 2 уровня 6.0% (45 мм рт.ст. при Ратм=760) называется гиперкапнией. Наиболее распространенной причиной гиперкапнии при наркозе является недостаточность альвеолярной вентиляции (гиповентиляция), обусловленная низким уровнем дыхательного объема и (или) частоты дыхания. Кроме того, в закрытом контуре ИВЛ продолжительная гиперкапния может быть вызвана недостаточно полным поглощением СО 2 . На капнограмме это проявляется в том, что концентрация СО 2 в фазе вдоха не падает до нулевого уровня.

    В после-наркозный период продолжительная гиперкапния при спонтанном дыхании пациента может быть вызвана:

      остаточным нейромышечным блоком;

      медикаментозным подавлением дыхательных центров;

      болевым ограничением дыхания (особенно после операции на органах брюшной полости).

    Заметим, что гиперкапния может сопровождаться гипоксией, однако это не обязательно. Гипоксическое состояние наступает позже гиперкапнии при более низких значениях альвеолярной вентиляции.

    Дополнительными клиническими проявлениями гиперкапнии являются: тахикардия, появление испарины, повышение напряжения, головная боль, беспокойство. При продолжительной гиперкапнии возникают нежелательные побочные эффекты, такие как склонность к сердечной аритмии (при воздействии летучих анастетиков), увеличение сердечного выброса, увеличение внутричерепного давления, легочная вазоконстрикция и периферическая вазодилатация.

    6. Интерпретация капнограммы и тренда СО 2 .

    Мониторы СО 2 обычно отображают кривую изменения концентрации СО 2 каждого выдоха в реальном времени (капнограмму) и тренд PetCO 2 за 30 минут. Резкие изменения в выделении СО 2 хорошо заметны на капнограмме выдоха, в то время как постепенные изменения лучше заметны по тренду СО 2 .

    Нормальная капнограмма.

    Капнограмма здорового человека при искусственной вентиляции имеет нормальную форму. Любое значительное отклонение от нормальной формы капнограммы отражает нарушение в дыхательной системе, комплексные или механические нарушения в контуре ИВЛ.

    СО 2 резко перестал обнаруживаться.

    Если капнограмма имела нормальный вид, а затем резко оборвалась до нуля, за один выдох, наиболее вероятной причиной является нарушение герметичности контура вентиляции.

    Другой возможной причиной является полная обструкция дыхательного тракта, например вызванная перекручиванием (перегибом) интубационной трубки.

    Экспоненциальное падение PetCO 2 .

    Быстрое падение PetCO 2 за несколько дыхательных циклов может указывать на:

    • выраженную легочную эмболию
    • остановку сердца
    • значительное падение артериального давления (сильная кровопотеря)
    • выраженную гипервентиляцию (за счет ИВЛ).

    Ступенчатое падение уровня PetCO 2

    Наиболее вероятной причиной резкого (но не до нуля) падения уровня PetCO 2 является:

      Перемещение эндотрахеальной трубки в один из главных бронхов, (например при изменении положения пациента).

    • Внезапная частичная обструкция воздушных путей.
    Резкое возрастание PetCO 2 .

    Внезапно появившееся резкое, но плавно проходящее возрастание PetCO 2 , при концентрации СО 2 во вдыхаемом воздухе равной нулю, может быть вызвано внутривенным введением бикарбоната.

    Постепенное снижение PetCO 2 .

    Постепенное снижение PetCO 2 в течении нескольких минут может быть вызвано возрастанием минутной вентиляции, падением сердечного выброса, или ухудшением перфузии.

    Постепенное возрастание PetCO 2

    Постепенное возрастание PetCO 2 в течении нескольких минут может быть вызвано наступлением гиповентиляции, возрастанием скорости метаболизма в результате реакции пациента на стрессовое воздействие (боль, страх, повреждение и т.п.).

    Интубация пищевода.

    При интубации пищевода небольшая концентрация СО 2 может регистрироваться, благодаря ручной вентиляции через рот. После извлечения эндотрахеальной трубки и успешного ее введения некоторое время наблюдается повышенное значение PetCO 2 из-за накопления СО 2 при апноэ.

    Злокачественная гипертермия.

    Монитор СО 2 является быстродействующим индикатором злокачественной гипертермии. Быстрое возрастание скорости метаболизма легко обнаруживается по возрастанию PetCO 2 (СО 2 вдоха остается нулевым).

    Неполная мышечная релаксация.

    При неполной мышечная релаксация и недостаточной глубине наркоза у больного сохраняется собственное дыхание “работающее” против ИВЛ. Это неглубокое спонтанное дыхание вызывает провалы на капнограмме.

    Частичная обструкция дыхательных путей.

    Искаженная форма капнограммы (с медленной скоростью нарастания) может указывать на частичную обструкцию воздушных путей. Возможной причиной обструкции может быть:

      генерализованный бронхоспазм,

      слизь в дыхательных путях,

      перегиб эндотрахеальной трубки.

    Эффект возвратного дыхания.

    Возрастание концентрации СО 2 вдоха отражает эффект возвратного дыхания, заключающийся в том, что пациент вдыхает СО 2 выдохнутый им в замкнутый контур ИВЛ (неполное поглощение СО 2 в контуре прибора ИВЛ).

    Осцилляции капнограммы при сердечных сокращениях.

    При слабом дыхании (особенно во второй половине выдоха при крайне низких скоростях потока) сердечные сокращения могут проявляться на спадающем участке капнограммы. Осцилляции капнограммы происходят из-за движения сердца против диафрагмы, вызывающего прерывистый поток воздуха в сторону эндотрахеальной трубки.

    Восстановление естественного дыхания.

    В критической ситуации пациента обычно вручную вентилируют 100% кислородом. При этом намеренно допускают рост PetCO 2 , чтобы запустить спонтанное дыхание. После чего пациент с не нарушенной вентиляцией быстро достигает удовлетворительной альвеолярной вентиляции.

    Детская капнограмма.

    На рисунке приведена типичная капнограмма, получаемая при использовании системы дыхания Jakson-Rees в детской анестезии. Начальное возвратное дыхание вызвано недостаточной очисткой газового потока, что было в дальнейшем скорректировано. Отчетливое альвеолярное плато подтверждает, что регистрируется "реальное" значение PetCO2.

    Остановка сердца.

    Быстрый спад высоты капнограммы, при сохранении правильной формы показывает резкое падение легочной перфузии из-за слабого сердечного выброса (1). При сердечной асистолии СО 2 не транспортируется к альвеолам легочным кровотоком (2). Начинается эффективная кардиопульмональная реанимация (3). Восстановление кровотока подтверждается ростом капнограммы.

    Тренд СО 2 и капнограмма в реальном времени помогут Вам оценить всю процедуру и ее эффективность.

    7. Практическое руководство по СО 2 мониторингу.

    Мониторы CO 2 используют для измерения небольшие количества газа, который непрерывно забирается из воздушного тракта пациента (150 - 200 ml/min). Монитор с боковым отбором газа может использоваться со всеми типами контуров анестезии. Для мониторинга СО 2 при естественном дыхании используется носовой адаптер.

    Основное правило для размещения отборника газа.

    Размещайте адаптер отбора газа как можно ближе ко рту или носу пациента. Таким образом вы исключаете нежелательное “мертвое пространство” между местом отбора газа и пациентом, и измеренная концентрация PetCO 2 будет точнее соответствовать уровню альвеолярного СО 2 .

    Когда для нагрева и увлажнения вдыхаемого воздуха используются нагреватель и влагообменник, адаптер отбора газа должен быть расположен между эндотрахеальной трубкой и нагревателем, и влагообменником.

    В частности, когда используется закрытый контур вентиляции, адаптер отбора газа должен быть расположен возле эндотрахеальной трубки, чтобы предотвратить смешивание очищенного и выдохнутого газов.

    Соединительные трубки не должны очищаться после использования. Очистка химическими веществами может испортить внутреннюю поверхность трубок и увеличить сопротивление потоку газа.

    Стальные газоотборные адаптеры являются многоразовыми и могут быть стерилизованы, но пластиковые адаптеры предназначены только для одного пациента.

    Используйте только фирменные трубки и адаптеры. Применение других образцов может привести к неправильным измерениям.

    До использования воздуховодные трубки и адаптеры должны быть визуально проверены.

    Удаление газа с выхода монитора.

    Из выходного штуцера прибора газ выходит с достаточным давлением. Для предотвращения загрязнения воздуха палаты анестезионными газами, выходная трубка монитора должна подключаться к шлангу вытяжной вентиляции.

    Мониторинг при слабых воздушных потоках.

    Небольшие объемы газа, которые отбираются для мониторинга, обычно удаляются. Однако если в закрытой системе используются ультранизкие потоки, газ после анализа должен быть возвращен в ветвь выдоха дыхательного контура.

    8. СО 2 мониторинг в посленаркозный период.

    С помощью носового адаптера отбора газа СО 2 монитор позволяет непрерывно измерять PetCO 2 у пациента со спонтанным дыханием. При этом СО 2 мониторинг является прекрасным методом для выявления апноэ или угнетения дыхательных центров.

    Если пациент остается под искусственной вентиляцией СО 2 монитор позволяет Вам оценить необходимый уровень вентиляции пациента непрерывно и неинвазивно.

    Часто нарушение вентиляционно-перфузного отношения, вызванное легочной патологией проявляется в артериально-альвеолярном различии (аАДСО 2). Измерение концентрации СО 2 в артериальной крови и сравнение его с PetCO 2 дает оценку состояния легких. Причины изменения аАДСО 2 обязательно должны быть выяснены.

    Nunn JF. Applied Respiratory Physiology,2nd edition London: Butterworth,1977.

    Smalhout B,Kalenda Z. An Atlas of Capnography, 2nd edition. The Netherlands: Kerckedosh-Zeist,1981

    Kalenda Z. Mastering Ifrared Capnography. The Netherlands: Kerckebosh-Zeist,1989

    Paloheimo M, Valli M,Ahjopalo H. A Guide to CO2 Monitoring. Helsinki,Finland: Datex Instrumentarium Corp,1983

    Lindoff B, Brauer K. Klinick Gasanalys. Lund, Sweden: KF-Sigma,1988

    Lillie PE, Roberts JG. Garbon Dioxide Monitoring. Anaesth Intens Care 1988;16:41-44

    Salem MR. Hypercapnia, Hypocapnia and Hypoxemia. Seminars in Anesthesia 1987;3:202-15

    Swedlow DB. Capnometry and Capnograpny: The Anesthesia Disaster Early Warning System. Seminars in Anesthesia 1986;3:194-205

    Ward SA. The Capnogram: Scope and Limitations. Seminars in Anesthesia 1987;3:216-228

    Gravenstein N, Lampotang S, Beneken JEM. Factors influencing capnography in the Bain circuit. J Clin Monit 1985;1:6-10

    Badgwell JM et al. Fresh Gas Formulae do not accurately predict End-Tidal PCO2 in Pediatric Patients. Can J Anaesth 1988;35:6/581-6

    Lenz G, Kloss TH, Schorer R. Grundlagen und anwendungen der Kapnometrie. Anasthesie und Intensivmedizin 4/1985; vol 26: 133-141

    Приложение 1

      “ГАРВАРДСКИЙ СТАНДАРТ” минимального анестезиологического мониторинга (1985).

      Обязательное присутствие анестезиолога в течении всего времени проведения общей и региональной анестезии.

      Артериальное давление и частота пульса (каждые 5 минут).

      Электрокардиография.

      Постоянный мониторинг/вентиляция и гемодинамика/.

      для вентиляции: наблюдение за размерами дыхательнго мешка,аускультация дыхательных шумов, мониторинг вдыхаемых и выдыхаемых газов (PetCO2).

      для кровообращения: пальпация пульса, аускультация сердечных тонов, наблюдение за кривой артериального давления, пульсовая плетизмография или оксиметрия.

      Мониторинг разгерметизации дыхательного контура с звуковым сигналом.

      Кислородный анализатор с заданным уровнем тревоги по минимальной концентрации кислорода.

      Измерение температуры.

    Заполнение пассажирами салона транспорта может быстро привести к опасному увеличению концентрации углекислого газа в воздухе. Переизбыток CO₂ может вызвать сонливость, физическую усталость и снижение концентрации внимания. Эта проблема актуальна для вагонов поездов, салонов автобусов, самолётов и многих других видов транспорта. Для её решения существуют специальные сенсоры климат-контроля, которые могут отслеживать концентрацию CO₂ в воздухе. Собранные сенсором данные могут помочь увеличить эффективность системы кондиционирования воздуха, что, в свою очередь, позволит снизить энергопотребление транспортного средства.

    Зачем измерять уровень CO₂ в салоне?

    Автобус, вагон метро, самолёт - конструкции этих транспортных средств становятся всё более герметичными. И чем больше в салоне пассажиров, тем выше там концентрация углекислого газа. В сравнении с пустым салоном, уровень CO₂ в переполненном может быстро достичь критических значений. А это означает, что необходима система вентиляции.

    Высокая концентрация углекислого газа в воздухе может вызывать ощутимую усталость и серьёзные нарушения концентрации внимания, что может быть крайне опасно для водителя. Так же, отсутствие вентиляции в салоне увеличивает вероятность распространения вирусных и бактериальных инфекций.

    На данный момент в большинстве транспортных систем охлаждения используется фреон или аммиак. Но с каждым годом доля систем, работающих на CO₂, растёт, в связи с экологичностью и негорючестью этого газа. Поэтому сенсоры CO₂ актуальны и для отслеживания утечек систем охлаждения.

    Из-за особенностей конструкции транспортных средств к используемым в них датчикам CO 2 могут предъявляться специальные требования. Из-за дефицита свободного пространства, габариты всех элементов систем вентиляции, в том числе и датчиков давления, должны быть достаточно небольшими. Также в случае поезда или автомобиля окружающая среда может быть недостаточно чистой, поэтому датчик CO 2 должен обладать повышенным классом защиты, не допускающим попадания внутрь корпуса пыли. Данным условиям прекрасно удовлетворяет датчик , обладающий миниатюрными габаритами, а также имеющий класс защиты IP50.

    Как работает система климат-контроля? (Как это работает?)

    Концентрация углекислого газа в пустом транспортном средстве - около 400 ppm, что является нормальной уличным показателем. Как упоминалось ранее, показатель концентрации CO₂ в салоне растёт вместе с количеством пассажиров. Оптимальным решением в таком случае будет использование адаптивных систем вентиляции. Сенсоры системы будут непрерывно измерять и оценивать содержание углекислого газа, благодаря чему вентиляционный комплекс сможет поддерживать требуемый уровень свежести воздуха.

    Экономия средств

    Согласно исследованиям инженеров SenseAir, использование адаптивных систем вентиляции поможет сохранить до 10% топлива, даже в режиме максимального охлаждения. Применение таких систем экологично и экономично.

    Так же, правильная вентиляция уменьшает риск многих заболеваний среди персонала и пассажиров транспортного средства, что исключает сопутствующие болезням издержки.

    Чистый воздух в салоне значительно уменьшает количество транспортных происшествий, связанных с сонливостью и сниженной концентрацией внимания водителя. Вероятность возникновения соответствующих издержек также уменьшается.

    Ключевые преимущества

    • Атмосфера салона, благоприятная для здоровья
    • Энергосбережение
    • Экологичность
    • Уменьшение рисков транспортных происшествий

    Каждый аквариумист должен понять - растения состоят из углерода [C] на 40-50% (сухого веса), а в аквариуме без подачи CO2 его настолько мало*, что им просто негде взять основной строительный материал для своих клеток! Это наглядно видно в Таблице состава растений.

    Растения используя световую энергию, кислород, углерод и водород осуществляют фотосинтез.
    С помощью фотосинтеза углеводы, например глюкоза, получается из двуокиси углерода CO2 по реакции:

    CO2 + 6 H2O + 674.000 кал ---> C6H12O6 + 6H2O
    или CO2 + 2H2O --> + O2 + H2O

    Как видно это невозможно без достаточного количества CO2.
    По этой формуле также видно, что процесс фотосинтеза растений требует определенного уровня энергии света (~674,000 кал). Если свет недостаточно яркий, фотосинтез происходить не будет. При уровне освещенности близком к оптимальному **, фотосинтез будет происходить все быстрее и быстрее.

    Данные научных исследований (1994) фирмы Tropica () , крупнейшей компании по выращиванию аквариумных растений, показали что в природе при достаточном количестве питательных веществ CO2 + свето являются главными лимитирующими факторами роста растений. При условии насыщения воды всеми питательными веществами, в компании Tropica две недели наблюдали результаты по выращиванию риччии, и получили следующие результаты:
    - нет подачи CO2 + низкая освещенность - рост растений = 0. (за две недели почти никакой прибавки массы листьев)
    - при малой подаче CO2 + низкой освещенности рост увеличивается в 4 раза (по причине низкой точки компенсации, LCP у водных растений)
    - малой подаче CO2 + высокой освещенности рост усиливается в 6 раз.
    - при сильной освещенности + высокой подаче CO2 1 грамм риччии вырастет в 6,9 грамм, это дает ежедневный прирост массы на 9,2% ! (см. график)

    Если подавать много CO2 при слабой интенсивности света получим совсем незначительное усиление роста растений (зеленая линия), как и при усилении одного только освещения (синяя линяя). Но при сильном свете и высокой концентрации CO2 в воде (~15-25мг/л) эффект просто потрясающий (красная линия). При интенсивности освещения ниже точки компенсации света (LCP) рост растений останавливается и энергии света хватает только на поддержание жизни растения (желтая линия).

    Даже средний уровень подачи CO2 в плохо освещенном аквариуме приводит к 4-х кратному увеличению роста растений, потому что может производится больше хлорофилла без фатальных последствий для баланса энергии растения - растение тратит меньше энергии и ресурсов для извлечения CO2 из воды, и остается больше энергии для оптимизации переработки световой энергии в ткани растения. В результате хотя не увеличивалась интенсивность освещения, растение может более эффективно использовать уже имеющийся свет. Очевидно, что выгода от увеличения интенсивности освещения + подачи CO2 превосходит эффект от повышения только одного из них.
    Этот график подтверждает истину что каждый фотон независимо от угла падения на лист растения используется для реакции фотосинтеза, т.е. использование в процессе этой реакции молекул CO2 напрямую зависит от интенсивности освещения.
    Прим.: одно дело получить максимальный рост, другое - Стабильность .

    Из вышеизложенных фактов следует что: интенсивность освещения должна соответствовать количеству подаваемого в аквариум CO2 и наоборот.

    Если освещение в аквариуме слабое, все равно стремитесь к достижению концентрации CO2 не менее 15 мг/л (это малая подача)! Еще лучше - всегда поддерживать ~30мг/л.

    У подавляющего большинства любителей растений не владеющих правильной методикой недостаток света и отсутствует подача CO2, поэтому темпы роста растений соответствуют желтой линии, в лучшем случае зеленой . Увеличив только свет, вы улучшите рост и получите синюю линию, но в этом случае возникает угроза появления водорослей. И только приведя освещенность в норму и сделав подачу CO2 ускорение роста будет в несколько раз (красная линия )! Это заставит растения расти невиданными темпами.
    Зачем это нужно? Во первых - вы не будете ждать несколько месяцев пока композиция приобретет запланированный вид - это произойдет всего за 1,5-3 месяца; во вторых - это дает возможность часто подрезать растения и точно формировать композицию; в третьих - только достаточно молодые листья водных растений имеют идеальное состояние и соответственно, идеальный внешний вид. Только при очень быстром росте растений можно получить совершенный аквариум, подобный работам Takashi Amano .

    почему именно co2 ?
    Растениям углерод доступен в двух формах: газообразной в виде оксида углерода , и растворенной в воде как бикарбонат . Растения предпочитают потреблять CO2 не из бикарбоната, а как чистый CO2 без больших энергетических затрат, кроме того многие растения не могут напрямую утилизировать бикарбонат для фотосинтеза. Растворенный в воде оксид углерода (CO2 - углекислый газ) дает растениям самый лучший и наиболее легко ассимилируемый источник углерода.

    какая концентрация co2 нужна растениям?
    Оксид углерода CO2 хорошо растворяется в воде. Концентрация CO2 в воде и воздухе уравнивается при 0,5мг/л. К сожалению CO2 растворяется в воде в десять тысяч раз медленнее чем в воздухе. Эта проблема решается относительно толстым недвижимым слоем (unstirrable layer или Prandtl boundary) который окружает листья водных растений. Недвижимый слой водных растений это слой спокойной воды через которую газы и питательные вещества должны диффундировать чтобы достичь листьев растений. Его толщина около 0,5мм, что в десять раз толще чем для наземных растений.
    Как следствие этого, чтобы обеспечить оптимальный фотосинтез водных растений концентрация свободного CO2 в воде должна быть порядка 15-30мг/л , при этом нельзя превышать предельно допустимую концентрацию CO2 для рыб 30мг/л.
    Низкая растворимость CO2 в воде, относительно толстый недвижимый слой и высокая концентрация CO2, нужная для обеспечения фотосинтеза подсказали одному ученому утверждение: "Для пресноводных растений, естественный уровень соединений углерода в воде является главным сдерживающим фактором фотосинтеза..." (подробнее см. оптимальное насыщение воды CO2 и )
    Прим.: ADA используя диффузор и отключение CO2 на ночь подает углекислоту до значительно больших значений, хотя из-за интенсивного потребления растениями концентрация в воде не превысит 30мг/л. Получаемый туман из мелких пузырьков дает газообразный CO2, что значительно ускоряет рост растений.

    co2 и кислород
    Вопреки распространенному заблуждению, углекислый газ не вытесняет из воды кислород*** и не ограничивает его доступность для дыхания рыб - они успешно сосуществуют. Наоборот - благодаря хорошему росту растений концентрация кислорода днем, когда растения активно фотосинтезируют, достигает 11 мг/л, что намного выше 100% границы насыщения при температуре воды 24С, и к утру падает только до 8,0 мг/л. Для нормальной жизнедеятельности рыб достаточна концентрация растворенного кислорода в воде 5 мг/л (насыщение 60%). На самом деле в аквариуме с растениями качество среды настолько выше чем в обычном аквариуме, что рыбы будут в значительно лучшей форме, и большинство видов будет размножаться без всякой стимуляции к нересту, а мальки прекрасно вырастают в общем аквариуме (если им подходит тот корм что размножается в общем аквариуме, мелкий циклоп и пр.). При подаче CO2 и pH 7.2-7.5 даже содержание малавийских цихлид дает прекрасные результаты с регулярным размножением в общем аквариуме.

    отключение co2 на ночь
    Что касается вопроса выключать подачу CO2 на ночь или нет, то здесь есть два мнения. Одни источники утверждают что этого делать не нужно. Считают что если в аквариуме до 1200 литров нормально буферизированная вода (с dKH=2-4), и он не перенаселен рыбами, содержание кислорода к утру остается достаточно высоким (8мг/л), а pH более-менее стабилен. Использование подачи CO2 по ADA при помощи диффузора имеет свои особенности, позволяет отключать подачу газа на ночь без опасений, и дает неожиданно хороший эффект !
    Растения потребляют CO2 только во время фотосинтеза, поэтому подача газа ночью просто не нужна. Максимальный фотосинтез происходит утром , когда в воде много свободного CO2, а уровень O2 и солнечной иррадиации наиболее низкие [см. ], поэтому важно утром перед включением света насытить воду углекислотой включив подачу CO2 за 1-2 часа ДО включения света. При Ступенчатом методе освещения активность Rubisco значительно больше и потребность в CO2 утром ниже чем при равномерном и потребление CO2 эффективнее, поэтому включать подачу CO2 за 1-2 часа до включения света не нужно. [см., раздел Metabolic flexibility]
    Обычно выбор делается на основании личных предпочтений. Если подавать CO2 методом распыления на ночь ее отключают, если же методом растворения (в канистровый фильтр) то нет, позволяя сэкономить на стеклянном диффузоре и убрать один прибор из аквариума, значительно сократить расход газа, и сделать обслуживание системы проще. Распыление может давать несколько лучший вид растений и очень хорошо очищает воду от взвеси. В любом случае одним из решающих факторов стабильности аквариума является стабильность подачи CO2. Оба варианта работают хорошо.

    баланс света и co2
    Интенсивность освещения и подача CO2 должны соответствовать друг другу.

    Исследования фирмы Tropica подтверждают то, что говорил Takashi Amano для Aqua Journal : "Ватты света должны соответствовать количеству подаваемого CO2. Если свет слишком интенсивный и растения не получают достаточного количества CO2, сильный свет принесет больше вреда чем пользы."

    тоже говорит что слишком много света без соответствующей подачи CO2 приносит растениям только вред. Для фотосинтеза растений не всегда нужно очень много CO2, что видно из формулы фотосинтеза: 6 CO2 + 12 H2O --> C6H12O6 + 6 H2O. При этом растения могут выделять кислород (активно фотосинтезировать) даже БЕЗ поступления питательных веществ! Это не может продолжаться долго. Растения становятся все более слабыми несмотря на активный фотосинтез. При этом потребление ими фосфатов и азота из воды уменьшается, а этим сразу воспользуются водоросли.

    Если много света но недостаточно CO2, растения не будут активно расти и появятся водоросли. Вносимые жидкие удобрения (например PMDD) еще больше усугубят проблему. С другой стороны если недостаточно света, а CO2 подается много, растения не потребляют CO2 и его концентрация может превысить допустимый предел став токсичной для рыб и беспозвоночных (>30мг/л). Некоторые растения более светолюбивые чем другие, например длинностебельные с очень тонкими листьями. Требуя больше света они, соответственно, требуют и большей подачи CO2 ! Как говорит Takashi Amano, нет сложных и простых растений, просто есть светолюбивые и тенелюбивые - кроме разного необходимого количества света и CO2 они ничем не отличаются. Следует с самого начала создания NA определить мощность флуоресцентных ламп и подачу CO2, чтобы в последующем эти факторы не уменьшали рост растений - будет проще определение их потребности в других питательных веществах. [См. Ole Pedersen, Claus Christensen and Troels Andersen , 1994 www.tropica.com.]

    сколько подавать co2

    Как сделать pH и насыщение воды CO2 идеальными для растений? Сделать в аквариуме KH=min.4 градуса, и отрегулировать подачу CO2 так, чтобы pH установился на уровне 6,8 утром и 7,2 вечером - в результате средняя концентрация CO2 будет ~15-30мг/л.

    pH и KH это то что каждому, кто держит аквариум с растениями абсолютно необходимо понимать. Это два взаимосвязанных понятия.
    pHэто мера кислотности воды (acidity). Ее определяет негативный логарифм количества гидроксидных ионов (H+) в воде - чем их больше, тем ниже pH. pH реакция воды может быть кислой (мене 7,0), нейтральной (pH=7,0) или щелочной (pH>7.0).
    Карбонатная жесткость kН(т.е. карбонатная жесткость) это мера щелочности воды. KH указывает на способность удерживать pH на определенном уровне, то есть является показателем буферных свойств воды . Она постоянно изменяется, поэтому ее называют временной жесткостью . Значение KH это количество бикарбонатfов в воде, которые нейтрализуют действие постоянно образующихся в аквариуме кислот понижающих pH, удерживая тем самым pH от понижения.

    В природе концентрация CO2 в воде редко бывает столь высока как того требует подводный сад, но в естественных водоемах соотношение поверхности воды, через которую поглощается CO2, к массе растений несоизмеримо больше чем в аквариуме, и его запасы постоянно возобновляются течением и выделением из донных отложений. Без искусственного обогащения воды CO2 весь доступный в аквариуме углекислый газ будет использован растениями за первые час-два после включения освещения и рост остановится.

    На практике темпы подачи можно определить так (при 100% эффективности реактора):
    при kH=2-4 подача должна быть 1 пузырек в минуту на каждые 10л воды в аквариуме. Это даст CO2=7-19мг/л при pH=6.8-7.2.
    О том как использовать значительно большую подачу говорилось ¬.

    Эти рекомендации дают только ориентировочные безопасные рамки подачи CO2. Наиболее эффективный способ подачи CO2 это метод распыления . Это можно сделать при помощи стеклянного диффузора, диффузора-помпы , или реактора конструкции Tom Barr .

    влияние co2 на pH

    co2 понижает pH
    При подаче CO2 в аквариум в воде образуются небольшие количества угольной кислоты (0.1-0.2%), она диссоциирует на ион и бикарбонат (основа KH), концентрация ионов H+ увеличивается, понижая рН - значит подавая CO2 мы можем понижать рН в аквариуме одновременно давая важнейший питательный элемент для роста растений - углерод [C].
    С понижением pH в воде увеличивается доля углерода в форме CO2, т.е. растворенного в воде CO2 становится больше чем бикарбонатов. (см. ниже в разделе "pH") Так как на значение pH влияет карбонатный буфер KH и концентрация CO2 в воде, то взаимосвязь (pH <-> KH <-> растворенный CO2) является жесткой . В связи с тем что pH в основном определяется наличием карбонатного буфера KH, количество подаваемого CO2 зависит от того, кокой нам нужен уровень pH в аквариуме с растениями. То есть в тройке (pH - KH - CO2) pH и KH являются заданными величинами, а подача CO2 будет регулироваться для обеспечения одновременно оптимального уровня pH=6.8-7.2 и концентрации углекислого газа в воде. Для получения оптимальной концентрации CO2=15-30мг/л и pH=6.8-7.2 вода должна быть с исходным KH=2-8, что соответствует воде с общей жесткостью dGH=4-10.

    но какими должны быть kH и pH?

    pH

    Оптимальным для роста растений является pH=6.8-7.2. Почему именно 6,8-7,2?

    Растениям нужно много CO2
    .
    Для хорошего роста растений нужно много CO2. Как говорилось ранее, для растений лучший источник углерода это CO2. Но в воде углерод может существовать в двух формах: углекислого газа CO2 растворенного в воде, и бикарбоната . Растворенный в воде газообразный CO2 непосредственно поглощается ратениями путем диффузии через стенки клеток. Бикарбонат же содержит химически связанный CO2 - то есть НЕ доступный для непосредственного потребления растениями - они должны сначала поглотить HCO3- и уже внутри клеток извлечь CO2. Это сложный и энергоемкий процесс, и не далеко все растения могут это делать (подробнее).

    В мягкой и кислой воде с pH<7.0 большинство углерода (~70%) будет находится в виде CO2 прекрасно усваиваемого растениями, и только 30% в виде бикарбоната , то есть: чем ниже pH, тем больше углерода находится в легко доступной для растений форме - растворенном в воде газообразном CO2! Это говорит о том что при равной подаче CO2 в аквариуме с мягкой водой с KH=2-6 (dGH=4-6°) растения получают больше CO2 чем в аквариуме с более жесткой водой.

    Стабильность pH при протекании биологических процессов в аквариуме.
    Буферизация это результат действия химических свойств слабых кислот. Когда слабая кислота диссоциирует в воде, отношение сформировавшихся пар кислота-основание имеет логарифмическое отношение. Если распечатать график отношения кислота/щелочность (acid-bace ratio) относительно pH, увидим что выше или ниже определенного значения pH, кривая зависимости практически плоская, то есть когда кислоты или основания добавляются в воду, pH не будет существенно изменяться! При определенном pH, называемом точкой равновесия , кривая практически плоская, означая что добавление кислот и оснований очень мало изменят pH. Заметьте что может быть больше чем одна точка равновесия, и они разные для разных кислот.
    Нас же интересует угольная кислота , точка равновесия которой pH=6.37 . Это идеальное значение для аквариумных растений, так как желаемый уровень pH чуть-чуть выше этого значения и обычно имеет тенденцию к понижению потому что в аквариуме в процессе нитрификации потребляется много щелочного буфера - бикарбоната HCO3-. Так как начальный уровень pH ВЫШЕ точки равновесия и любое смещение будет по направлению к ней, довольно много кислоты может быть "буферизировано" перед тем как pH упадет ниже этой точки. В этом залог стабильности pH, и таков pH (6.6-7.2), выбранный T. Amano как оптимальный для Nature Aquarium.
    Прим.: возможно на этом явлении основан метод Krause определения оптимального pH воды для конкретного аквариума.

    Соотношение аммония NH4+ и токсичного аммиака NH3.
    аммоний может существовать и в форме аммиака , который очень токсичен для всего живого (токсичен уже при концентрации 0,06 мг/л). Соотношение аммоний NH4+/аммиак NH3 в аквариуме в основном зависит от значения pH. Чем ниже pH, тем меньше токсичного аммиака. При pH=7.0 его только 0,5%, но при повышении pH до 7,5 аммиака уже 4%. То есть в восемь раз больше! Простое правило: при pH больше 7.0 начинает значительно увеличиваться доля токсичного аммиака. При pH=6.8-7.2 в NA будет доля токсичного аммиака в пределах 0,4-0,8%. Так как в NA поддерживается очень низкий уровень аммония/аммиака, то даже при ухудшении ситуации, pH в пределах 6,8-7,2 гарантирует отсутствие токсичного аммиака .

    Активность нитрифицирующих бактерий.
    При pH=6,6 нитрифицирующая деятельность бактерий составляет примерно 85% от максимального уровня. Это значит что в NA при pH=6.8-7.2 бактерии никогда не работают на максимуме, и при незначительном ухудшении параметров воды всегда смогут немного увеличить активность и справится с увеличившейся нагрузкой, сохранив стабильность аквариума. Таким образом создается такой же запас стабильности, как и в описанном выше примере с точкой равновесия pH. (Наиболее активно нитрификация протекает при pH=7,5-8,5; ниже pH7,5 она замедляется.)

    KH

    Теперь нужно определить какое должно быть значение KH. Мы выяснили, что в аквариуме для оптимального роста растений нужно поддерживать pH=6.8-7.2.

    Мягкая вода с kH=2-5 сама по себе кислая и а в т о м а т и ч е с к и буферизируется на уровне pH=6.0-7.3 потому что большинство углерода в ней содержится в форме углекислого газа а не угольной кислоты , значит во избежание падения pH ниже нормы при подаче углекислого газа минимальный уровень kH до подачи CO2 в аквариум должен быть min.KH=4.0.

    Почему не больше? Потому что если начальный уровень kHmax.>7.0, т.е. вода слишком жесткая, она будет иметь начальный pH~7.8, и для достижения нужного уровня pH потребуется превысить предельно допустимую для рыб концентрацию CO2 в 30мг/л. В этом случае просто не получится снизить pH до оптимального уровня.
    Если же KH слишком низкий (kH<2), при завышенной подаче CO2 или повышении уровня нитратов возникнет угроза внезапного резкого падения уровня pH ниже 6.8 (т.н. обвал pH), что губительно для растений и рыб.

    Для поддержания стабильного pH вода до начала подачи CO2 должна иметь минимальный уровень kHmin.=4 , чтобы в любой момент не исчерпался карбонатный буфер воды, и это не привело к обвалу pH. Есть и другая возможность этого избежать - субстрат с хорошими буферными свойствами который будет буферизировать pH за счет щелочности а не kH.

    Далее. Вы помните, что взаимосвязь (pH - kH - CO2) является жёсткой , значит по Таблице 1 зависимости одной величины от другой по требуемому pH и заданному KH можно определить, какая будет концентрация CO2 при выбранных нами kH и pH.

    По таблице видно, что при pH=6.8-7.2 и KH=4-5 концентрация CO2 будет 7,6-23,8 мг/л. Подавая в воду такое количество CO2 при KH=4-5 мы получим и оптимальный pH, и оптимальное насыщение воды CO2 для бурного роста растений в аквариуме.

    Чем ниже pH (<7.0), тем больше в воде легко потребляемого растениями растворенного CO2, и тем лучше потребление растениями всех остальных питательных веществ. В то же время kH растениям совершенно не важен, важен pH. Часто значение kH равно dH, но бывает что нет. Жесткость воды dH является несущественным фактором и второстепенна для аквариума с растениями. Высокий GH вовсе не подавляет рост растений, часто даже длинностебельные растения растут в воде с жесткостью dH 10-12 лучше чем в мягкой, и вода никогда не должна быть слишком мягкой чтобы не было радикулита .

    Важно знать, что подобная взаимозависимость pH/kH/CO2 характерна только для аквариума в котором основным компонентом щелочности является карбонатная жесткость воды kH (с нейтральным грунтом без органики и без растений), в аквариуме же с растениями, с богатым органикой и гуминовыми кислотами грунтом kH в буферной системе играет намного меньшую роль, что делает подобные таблицы и pH-контроллеры бесполезными. Единственный верный способ контролировать концентрацию CO2 - дропчекер с калиброванным раствором kH=4.00.

    нужен ли нам вообще kH ?
    Увеличение концентрации CO2 в воде вызывает понижение как pH, так и kH. Выше говорилось о том, что при подаче CO2 обязательно должен быть некий минимальный уровень min.kH который не позволит обрушиться (необратимо резко упасть) кислотности pH когда концентрация CO2 достигнет определенной величины что исчерпает весь буфер kH, то есть буферизация pH прекратится. Проблема в том что после такого обвала после снижения подачи CO2 восстановиться kH уже не сможет. То есть нужен щелочной буфер. Это так, но аквариум с растениями может обойтись вообще без kH и иметь достаточный буфер чтобы не было никакого обвала pH.
    Например, если мы подаем CO2~30мг/л в очень мягкую воду, pH может быть 5.8, а kH=0. Почему тогда не происходит обвала pH и он стабильно держится? Это происходит потому, что в субстрате и в воде кроме kH (карбонат/бикарбонат) все же есть вещества буферизирующие pH, то есть еще есть щелочность, а щелочность это далеко не только карбонтаная жесткость kH...
    Непонимание происходит от того что путают понятия карбонтаной жесткости kH и щелочности вообще (alkalinity). Щелочность и kH совсем не одно и то же. Щелочность это способность раствора сопротивляться падению pH (буферизировать) при добавлении кислоты. Чем выше значение, тем больше щелочность. Она формируется за счет соединений карбонатов, бикарбонатов, боратов, фосфатов, гидроксидов. А KH это только мера количества карбонатов/бикарбонатов в воде. То есть мера щелочности вовсе не обязательно показывает присутствие какого либо из этих соединений, а именно карбонатов/бикарбонатов - kH. Проще говоря, щелочность это способность удерживать pH вообще, а kH это только ее часть - карбонаты/бикарбонаты. То есть отсутствие kH вовсе не означает что раствор не имеет щелочной буферной емкости. KH воды может быть 0-1, но при подаче CO2~30мг/л обвала pH не будет – он будет удерживаться не за счет kH, а за счет других соединений дающих щелочность. Обычно kH образует большинство щелочности в системе, но в аквариуме с растениями это не так. В таких аквариумах pH удерживает буферная емкость субстрата с высоким содержанием гуминовых кислот и органики вроде ADA Aqua Soil или его аналогов , они способны делать это несколько лет. Гуминовые кислоты понижают pH до 6.8 безо всякой подачи CO2, в то же время при подаче CO2 до 30мг/л cистема уравновешивается при pH~6.5. Кроме того, часть kH и буфера субстрата постоянно возобновляется за счет подменной воды .
    Но если в буферизированной иной нежели kH щелочностью при kH=0 кислотность pH не зависит от kH, как тогда контролировать концентрацию CO2, ведь тогда нельзя воспользоваться таблицей зависимости pH<->kH ? Только при помощи дропчекера с калиброванным раствором KH=4.00 .
    Непонимание этих вещей иногда приводит аквариумистов к покупке самого ненужного прибора для аквариума с растениями - pH-контроллера .
    Что касается благополучия растений, то им нужен определенный pH, а kH им безразличен . KH это не общая жесткость воды dH дающая жизненно важные элементы (Ca, Mg), и он никак не влияет на рост растений, только оптимальный диапазон pH 6.8-7.2 улучшает их рост. А большинство рыб подходящих для аквариума с растениями совершенно спокойно относятся даже к pH 5.5. Поэтому kH нам не нужен, но только если есть другой щелочной буфер - в субстрате.

    жесткая вода
    Для наилучшего роста растений требуется оптимальный pH=6.8-7.2. Если водопроводная вода имеет KH выше чем 7.0dKH, вы не сможете достичь нужного уровня потому что концентрация CO2 превысит предельно допустимую для рыб - 30мг/л. Нужно умягчить воду смешав с водой полученной после фильтрации методом обратного осмоса (KH~0).
    Распространенное заблуждение - думать что при подаче CO2 снижение уровня pH в жесткой воде будет намного больше чем в мягкой. Это не так. Что для мягкой, что для жесткой воды при подаче CO2 смещение pH будет почти равным, в том числе и суточные колебания при отключении подачи CO2 на ночь. Достаточно внимательно посмотреть Таблицу kH-pH-CO2.

    мягкая вода
    Слишком мягкая вода несет в себе две опасности: вероятность обвала pH при подаче CO2, и недостаток Ca+Mg. Мягкая вода обычно (но не всегда!) имеет и очень низкий kH. Если в воде отсутствует щелочной буфер подача CO2 может привести к обвалу pH. Но так как kH является только частью этого буфера, нужно ли повышать карбонатную жесткость воды kH заисит от того какой у вас субстрат. Если это аквариум с растениями c богатым органикой грунтом , kH можно не повышать . В этом случае жесткость воды повышают внося только составляющие постоянной жесткости воды, например Amania GH Booster . Если же вам нужен высокий pH+kH (например вы выращиваете растения в акваруиме с цихлидами), используйте состав повышающий и GH, и kH - Amania GH+KH Booster. Можно также смешать жесткую водопроводную воду с RO-водой для получения воды с требуемым dkH и dH. О повышении жесткости RO-воды смотри в разделе восстановление RO-воды .

    что делать, если карбонатная жесткость воды (KH) слишком высока?
    Можно умягчить воду до требуемых KH=4 путем очистки жесткой водопроводной воды методом обратного осмоса и смешивая ее с водопроводной.
    Если карбонатная жесткость воды dKH намного выше чем требуется (>=7.0), и нет возможности умягчить воду, подавать CO2 нужно до достижения концентрации не более 30мг/л (pH~7.0). Понизить pH до оптимального значения подачей CO2 не получится так как для это придется превысить допустимую концентрацию CO2 для рыб 30мг/л, но это можно сделать используя субстрат подкисляющий воду вроде ADA Aqua Soil . Никогда не используйте для этого ионнобменную колонку!

    Пример. В аквариуме вода ДО подачи CO2 была KH=10. Настроим подачу CO2. Затем раз в день измерять pH (в середине осветительного периода аквариума), если pH выше 7,0 понемногу увеличить подачу углекислого газа. Когда подача CO2 будет такой что pH=7,0 это и будет оптимальная подача углекислого газа в ваш аквариум. Еще раз измерить несколько понизившееся от подачи CO2 значение KH, и по таблице узнать концентрацию CO2. При kH=6,0 и pH=7,0 концентрация CO2 будет 18мг/л, причем утром pH будет 6,8 а вечером 7,2.

    Влияние фотосинтеза растений на pH в течение суток
    В течение суток фотосинтез растений влияет на pH воды в аквариуме. Растения в течение дня фотосинтезируют потребляя небольшое количество угольной кислоты , при этом pH повышается.
    Независимо от того, освещено растение или нет, оно дышит 24 часа в сутки. То есть растения постоянно потребляют кислород и производят CO2. Только днем, фотосинтезируя, растения потребляют CO2 и производят кислород как побочный продукт.
    В густо засаженном растениями аквариуме, свет включается в 10-00 утром, и выключается в 21-00 вечером. Ночью, когда света нет, растения дышат 11 часов, выделяя CO2 который понижает pH, соответственно pH упадет к утру до 6,8. Когда утром свет включается, растения одновременно и фотосинтезируют и дышат, потребляя CO2 и выделяя кислород - pH начинает повышаться. В полдень pH поднимется до 7,0, и будет продолжать расти вплоть до 21-00 вечера, до 7,2. С выключением света pH снова начнет постепенно падать, потому что растет концентрация CO2. Чем более активно растут растения, тем больше они потребляют CO2 в течение дня, и тем сильнее к вечеру повысится pH.
    Т. Амано говорит: "Для определения сколько растения потребляют CO2 можно сравнить уровень pH утром и вечером. Наименьший уровень pH будет утром - перед ВКлючением света, после ночи дыхания рыб и потребления ими кислорода и выдыхания CO2, а наивысший уровень pH будет вечером, перед ВЫключением света, после дня потребления CO2 растениями и производства кислорода. Чем больше эта разница, тем больше потребление CO2 и соответственно здоровее ваши растения." (vectrapoint.com)

    Влияние процесса нитрификации на pH
    В процессе нитрификации, т.е. процесса преобразования бактериями аммония NH4+ в нитрат NO3, бактерии Nitrosomonas используя NH4+ и бикарбонат HCO3- производят сначала токсичный нитрит NO2- и угольную кислоту H2CO3, а затем Nitrobacter преобразуют нитрит NO2- в безвредный нитрат NO3- в процессе чего на каждый 1мг преобразования аммония потребляется 8.64мг щелочного буфера, а именно бикарбоната HCO3-. При этом при преобразовании промежуточного метаболита азотной кислоты HNO3 до NO3 выделяется H+ что понижает pH. При преобразовании одной молекулы NH4 до NO3 высвобождается два иона H+, упрощенно процесс описывается как: NH4+ + 2O2 => H2O + H+ + H+ + NO3- (см. Understanding soil analysis data 59p.). Более детально для NH4->NO2 бактериями Nitrosomonas: 55NH4++ 76 O2 + 109HCO3- => C5H7O2N + 54NO2-+ 57H2O + 104H2CO3; для NO2->NO3 бактериями Nitrobacter: 400NO2- + NH4+ + 4H2CO3 + HCO3- + 195 O2 => C5H7O2N + 3H2O + 400 NO3- ().
    В аквариуме с растениями со временем снижается как карбонатная kH и общая жесткость воды GH, так и pH. При ухудшении роста растений в воде и состояния колонии бактерий в фильтре и грунте процесс нитрификации останавливается на полпути и происходит накопление не только токсичного нитрита NO2-, но и бикарбоната HCO3-, в результате чего pH повышается.

    выветривание co2
    Углекислый газ очень легко выветривается из воды в окружающий воздух, так же легко как и при взбалтывании бутылки с газированной водой, поэтому нужно полностью исключить движение поверхности воды. Для этого:
    - НИКОГДА не аэрируйте воду днем, только ночью
    - всегда размещать выходной патрубок канистрового фильтра ниже уровня воды,
    - не использовать разбрызгиватель на возврате воды в аквариум из фильтра,
    - в случае применения помп для создания движения воды располагать их так, чтобы исключить движение поверхности воды.
    Никогда не используйте открытые навесные фильтры типа биоколесо или водопадных как - они сильно выветривают из воды углекислый газ! Некоторые акваскейперы используют и их, но тут важно как его установить. Если повесить его на аквариум с рамкой, так что вода падает с высоты, то он выветривает CO2, если аквариум без рамок и стяжек и носик погружен в воду, то нет.

    контроль концентрации co2
    Для определения концентрации CO2 в воде достаточно измерить KH воды и ее pH, а затем рассчитать по формуле: CO2 = 3.0 * KH (в градусах) * 10^(7.00 - pH) . Можно также определить по таблице или графику, или с помощью калькулятора. Этот метод имеет большую погрешность и не может служить точным ориентиром.

    думать что pH и co2 это одно и то же - опасно
    Если падение pH происходит от большого количества СO2 в результате дыхания бактерий в грунте, можно увеличивать подачу CO2. Но если это происходит на фоне высокого уровня нитратов, значит низкий pH вызван плохим биологическим равновесием и нужно увеличить подмену воды, понизить нитрат, и только потом увеличивать подачу CO2.
    Слишком высокий pH является типичной "болезнью" аквариума на ранней стадии Setup. T. Amano в разделе о борьбе с водорослями на сайте журнала Aqua Journal обращает внимание на это обстоятельство:
    "...на ранних стадиях бактерий недостаточно и pH очень высокий, понизьте pH увеличив подачу CO2." (прим.: но не ранее второй недели setup!) В зрелом аквариуме в грунте и фильтре много бактерий что pH, выделяется больше CO2, и как следствие pH ниже.

    * концентрация CO2 всего 2-3 ppm: от жизнедеятельности нитрифицирующих бактерий разлагающих органику в грунте и канистровом фильтре, дыхания рыб и растений
    **расчет мощности флуоресцентных ламп для NA смотри в разделе освещение.
    *** смотри раздел роль кислорода.

    Статья Ole Pedersen, Claus Christensen and Troels Andersen (2001) ,1994 www.tropica.com ();
    она же на англ. в формате.pdf в он-лайн журнале: Interactions between CO2 and light stimulate the growth of aquatic plants. .
    из статьи "", by George and Karla Booth, Copyright 2000, www.frii.com/~gbooth/AquaticConcepts/Articles/book.htm#Intro
    ,
    by Dave Hueber t http://www.hallman.org, mailto:[email protected]
    Horst, Kaspar, & Kipper, Horst E. (1986). The Optimum Aquarium. Bielefeld, Germany: AD aquadocumenta Verlag GmbH
    By Ole Pedersen, Troels Andersen and Claus Christensen, This article first appeared in The 2007 vol. 20 (3) pp 24-33;
    Interactions between light and CO2 enhance the growth of Riccia fluitans L.; Andersen T & Pedersen O. (2002); HYDROBIOLOGIA 477: 163-170
    Andersen T, Pedersen O (2004) Higher CO2 concentrations alleviate co-limitation of light, N and P on growth in the aquatic liver wort Riccia fluitans L. XXIX SIL Congress. 8-14 August, Lahti, Finland,
    by John Whitmarsh, Govindjee
    Фотосинтез -
    CO2 for Landscaped Aquariums - TFH, 06/00
    CO2 Supplementation in thePlanted Tank - TFH, 03/96
    на Petfrd.com
    , by John LeVasseur
    самая большая про CO2 (англ.)
    ""
    www.rexgrigg.com - .
    , Tom Barr
    , Tropica ()
    Understanding the General Chemistry of the Planted Aquarium, Gregory Morin, Ph.D, Seachem ()

    Воздух является смесью газов, в котором диоксид углерода (CO2) занимает по количеству лишь четвертое место, однако важнейшее значение для всего живого. Измерить концентрацию углекислого газа достаточно легко, а данные о количестве CO2 позволяют косвенно судить о содержании других веществ и использовать эти данные для анализа качества воздуха. Основной единицей измерения концентрации углекислого газа являются промилле (ppm).

    При небольшом повышении уровня CO2 человек ощущает духоту, усталость, сонливость, невозможность сосредоточиться, потерю внимания, раздражительность, снижение работоспособности и т.д.

    В замкнутых помещениях с недостаточной вентиляцией человек достаточно активно поглощает кислород (O2), при этом выдыхая большое количество углекислого газа, и если к перепадам содержания в воздухе кислорода человек мало восприимчив, то перепады содержания CO2 чувствуются каждой клеткой (и это не метафора) Связанно это с тем, что процесс газообмена O2 и CO2 в легких происходит за счет пассивной диффузии через мембрану клетки, а диффузионная способность CO2 в 25-30 раз выше, чем у O2, именно поэтому к изменениям концентрации CO2 в воздухе, человек очень чувствителен.

    Так же существенное влияние оказывает то, что газообмен в клетках протекает нормально только при правильном значении парциального давления CO2 в крови (PA CO2). При этом как повышение, так и понижение PA CO2 приводит к тому, что ухудшается перенос O2 к клеткам, а так же к множеству других изменений. Простой пример: если задержать дыхание, то в легких ухудшается перенос O2 к клеткам, но перенос CO2 не прекращается, при этом первоначально желание сделать глубокий вдох вызывает именно рост PA CO2. Это защитная функция организма - команда нацеленная вернуть уровень PA CO2 в норму, предупреждение, что что-то не в порядке. Аналогично организм ведёт себя в душных помещениях с повышенным уровнем CO2 - появляется желание сделать глубокий вдох, открыть окно, выйти подышать на балкон или улицу.

    Как видим наиболее вредным является долговременное пребывание в помещениях с высоким содержанием CO2 , именно поэтому особое внимание надо уделять домашней вентиляции и вентиляции рабочих мест. При этом наиболее правильный и энергоэффективный метод регулирования воздухообмена, это регулирование по датчику CO2 .

    Применение данного метода регулирования ещё и наиболее удобно для пользователя, так как не требуется щелкать выключателями, крутить регулятор, постоянно подстраивая воздухообмен, и тем более переключать скорости на пульте управления. Пользователь вообще никак не вмешивается в работу системы вентиляции, агрегат всё регулирует автоматически и максимально точно, создавая идеальную атмосферу в помещениях независимо от постоянно изменяющихся условий.

    Варианты управления по датчику CO2

    Следует обратить внимание, что возможно два типа регулирования воздухообмена по датчику CO2.

    Вентилирование одним агрегатом нескольких помещений

    Вентилирование нескольких изолированных объемов воздуха, например квартиры, дома, нескольких офисов. Применяется в основном на бытовой линейке оборудования CAPSULE и I-VENT, а так же на приточно-вытяжных агрегатах ZENIT, ZENIT HECO. Для каждого помещения нам потребуется:

    • Пропорциональный клапан на приточном канале
    • Пропорциональный клапан на вытяжном канале (Если вытяжка в каждом помещении)
    • Датчик CO2 для каждого помещения или вытяжного канала каждого помещения.
    • VAV-система на агрегате (устанавливается заводом-изготовителем).

    При появлении в помещении человека, датчиком CO2 будет регистрироваться повышение уровня CO2. Пропорциональный клапан с электроприводом будет регулировать воздухообмен на основании показаний именно своего датчика CO2. Такой вариант управления позволит максимально точно поддерживать качество воздуха в помещении, не позволяя появиться чувству нехватки воздуха, и не создавая излишнего воздухообмена.

    Пример работы вентиляции по датчикам CO2 установленным в помещениях:

    В помещении №2 находится один человек, и для компенсации повышения концентрации CO2 достаточно подавать в помещение 25 м³/ч, В помещении №1 же находятся два человека и для компенсации требуется подавать уже 75 м³/ч. Если из помещений выйдет по одному человеку, то в помещении №2 выделение CO2 прекратится полностью, клапан закроется, и вентилирование помещения прекратится. В помещении №1 выделение CO2 сократится, и агрегат постепенно снизит воздухообмен помещения №1 до 25 м³/ч.

    ВНИМАНИЕ!!!

    Применение одного датчика CO2 в вытяжном канале при наличии нескольких помещений нежелательно. Датчик CO2 будет регистрировать суммарную концентрацию углекислого газа и в обоих помещениях одинаково увеличивать воздухообмен. В результате в верхнем помещении воздухообмена недостаточно для компенсации повышения уровня CO2, а в нижнее подается излишнее количество воздуха.

    Вентилирование одним агрегатом одного помещения

    Вентилирование одного изолированного объема воздуха, например офиса, спортзала, производственного помещения, квартиры-студии. В этом случае нам потребуется только датчик CO2 установленный в вытяжном канале (устанавливается заводом-изготовителем). Воздухообмен будет автоматически регулироваться для поддержания требуемого уровня CO2 , независимо от изменения количества людей в помещении, а так же от их рода деятельности.

    Данный вариант регулирования применяется в основном на промышленной линейке оборудования серии Zenit , Zenit HECO , CAPSULE и даже в установках i-Vent . Применение данной системы позволит организовать максимально энергоэффективную систему вентиляции, с минимальными эксплуатационными издержками и полностью автоматическим управлением.

    Пример работы вентиляции по датчикам CO2 установленным в вытяжном канале:

    В помещении находится один человек, и для компенсации повышения концентрации CO2 достаточно подавать в помещение 50 м³/ч, по мере увеличения в помещении количества людей увеличивается регистрируемый уровень CO2, и агрегат автоматически увеличивает количество воздуха, которое требуется подавать в помещение, для компенсации повышения уровня CO2.

    Расчет системы вентиляции по CO2

    Это один из вариантов расчета системы вентиляции, но, к сожалению, применяется достаточно редко, так как систем умеющих регулировать воздухообмен по датчику CO2 не слишком много. Для расчета нм понадобится знать следующие данные:

    1. Концентрация CO2 на улице.
    2. Расписание пребывания людей в обслуживаемых помещениях.
    3. Тип физической активности в обслуживаемых помещениях.
    4. Требуемый поддерживаемый уровень CO2.

    Формула расчета воздухообмена для компенсации выделения CO2 одним человеком: L=(G×550)/(X2-X1)

    • L - воздухообмен, м3/ч;
    • X1 - концентрация CO2 в наружном (приточном) воздухе, ppm;
    • X2 - допустимая концентрация CO2 в воздухе помещения, ppm;
    • G - количество CO2 выделяемое одним человеком, л/час;
    • 550 – преобразование значений X1 и X2 из ppm в г/м3.

    Данные для G и концентрации CO2 на улице подбираются из таблиц.

    Пример расчета квартиры с количеством проживающих 3 чел.

    Для данных условий наиболее подходящим будет агрегат Zenit-350 Heco .

    Если составить расписание дня, то можно будет увидеть картину изменения воздухообмена в течение дня, в зависимости от выделения CO2 в квартире.

    Как видим даже по усредненному расписанию график изменения воздухообмена весьма существенный, в реальности же система постоянно регулирует воздухообмен, практически не имея на графике «полок». При этом, если агрегат подобран верно, в данном случае это Zenit-350 Heco, то значение CO2 в квартире всегда будет неизменно.

    *Для расчета не принципиально, какой тип управления агрегатом по CO2 применяется. Это может быть как датчик в вытяжном канале, если это вентиляция квартиры студии, так и комнатные датчики CO2 совместно с

    Выбор редакции
    Воздух состоит, как известно, из молекулярного азота (78%), молекулярного кислорода (21%), аргона (1%), небольшого количества паров воды...

    Штепсельный разъем для подключения различных приборов к электросети известен всем, но не всегда им пользоваться удобно. Поэтому...

    Недавно у меня сломался монитор BenQ FP71G+. Естественно решил починить его сам, и теперь опишу все, что происходило. При нажатии кнопки...

    Раскладка первого ряда кладки Строительство кирпичного дома предполагает кладку по разным схемам, исходя из разных размеров изделий и...
    Верхняя плита капители колонны, пилястры Альтернативные описания Доска для арифметических вычислений в Древней Греции, Риме, затем в...
    Еще в прошлом веке многие писатели-фантасты в своих романах представляли концепцию полностью автоматизированного жилого дома. «Умные»...
    Купить качественный смеситель сейчас не так просто. Большинство из них не выдерживает испытания временем и начинает подтекать, а то и...
    У бабушки моего сына скоро будет день рождения. Так как я его увлёк микроконтроллерами, то пришла идея подарить какой-то прибор,...
    В которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем...