Известковый камень. Свойства известняка


Цель работы: определить активность извести, скорость и температуру гашения.

Основные понятия

Строительной воздушной известью называется продукт, получаемый путём обжига кальциево-магниевых горных пород до возможно более полного выделения углекислоты. Известь применяют в смеси с различными добавками для получения различных вяжущих: известково-кварцевых, известково-шлаковых, известково-глинистых и др. Из неё изготавливают силикатный кирпич, силикатные блоки, армированные крупноразмерные силикатные детали и различные другие строительные изделия.

Основным процессом при производстве воздушной извести является обжиг, при котором известняк декарбонизируется и превращается и превращается в известь по следующей реакции:

CaCO 3 + 178,58 кДж → CaO + CO 2

В лабораторных условиях диссоциация углекислого кальция протекает примерно при 900 °С, в производстве температура обжига составляет 1000-1200 °С.

Негашёная известь бывает комовой и молотой. Её получают в виде кусков светло-жёлтого или серого цвета. Она интенсивно присоединяет влагу и поэтому хранить её рекомендуется в герметично упакованном состоянии. Если в сырье содержится более 6% глинистых примесей, то продукт обжига проявляет гидравлические свойства и называется гидравлической известью.

Качество получаемой извести оценивают по активности, которая показывает общее содержание свободных оксидов кальция и магния, находящихся в активном состоянии. Кроме них в извести могут находиться оксиды MgO и CaO в неактивном состоянии; это неразложившийся карбонат и крупнокристаллические включения (пережог).

В зависимости от содержания активных CaO и MgO известь выпускается трёх сортов (табл. 9.1).

Таблица 9.1

Классификация извести по сортности

Воздушная известь может применяться в гашёном виде.

Гашёная известь бывает в виде пушонки, теста или молока. Содержание влаги в пушонке не превышает 5%, в тесте менее 45%. Процесс гашения протекает по следующей схеме:

CaO + H 2 O Ca (OH ) 2 +65,1 кДж

и сопровождается выделением тепла, что вызывает подъём температуры, способный воспламенить дерево. Гидратация оксида кальция – реакция обратимая, её направление зависит от температуры и давления водяных паров в окружающей среде. Упругость диссоциации Ca(OH) 2 на CaO и H 2 O достигает атмосферного давления при 547 °С, при более высокой температуре гидроксид кальция может частично разлагаться. Чтобы процесс шёл в нужном направлении, необходимо стремиться к повышению упругости водяных паров над Ca(OH) 2 и не допускать слишком высокой температуры. Вместе с тем следует избегать и переохлаждения гасящейся извести, так как это сильно замедляет гашение. Более половины её зёрен имеют размер, не превышающий 0,01 мм. Парообразование защищает материал от чрезмерного повышение температуры.

Объём пушонки при гашении извести в 2-3 раза превышает объём исходной негашёной извести за счёт увеличения объёма пустот (пор) между отдельными зёрнами образующегося материала. Плотность негашёной извести в среднем равна 3200, а гашёной – 2200 кг/м 3 .

Для гашения извести в пушонку теоретически необходимо добавлять 32,13 % воды по массе. Практически в зависимости от состава извести, степени её обжига и способа гашения, берут примерно в два, а иногда в три раза больше воды, так как под действием тепла, выделяющегося при гашении, происходит парообразование, и часть воды удаляется.

В зависимости от температуры, развиваемой при гашении, различают высокоэкзотермичную (t гаш. >50 °C) и низкоэкзотермичную (t гаш. <50 °C) известь, а по скорости гашения: быстрогасящуюся (не более 8 мин.), среднегасящуюся (8-25 мин.) и медленногасящуюся (более 25 мин.) известь.

Для ускорения процесса гашения извести используются добавки CaCl 2 , NaCl, NaOH, которые взаимодействуют с оксидом кальция с образованием более растворимых соединений в сравнении с Ca(OH) 2 а для замедления – добавки ПАВ, солей серной, фосфорной, щавелевой, угольной кислот.

Актуальность темы.

Известняки имеют чрезвычайно широкую область применения. Они употребляются для приготовления флюсов (в металлургии), для строительства, для производста извести и цементов, в производстве силикатного кирпича, в химической промышленности, в сахарном производстве и т.д. Главным образом, их используют в металлургической промышленности в качестве флюсов. Внедрение новых технологических процессов в металлургии требуют повышения качества флюсового известняка по химическому составу и механической крепости. Истощение запасов качественного сырья эксплуатируемых месторождений и закрытие карьеров в связи с обострением экологических проблем потребовало экстренного ввода в эксплуатацию новых месторождений. В связи с этим была начата разведка Родниковского месторождения Донецкой области. Исследование закономерности пространственного распределения качественных показателей известняков, а также выяснение причин изменчивости этих показателей, на месторождении не проводились. Детальное изучение геологических условий, тектоники и химического состава известняков позволит обосновать связь геологических факторов и качества сырья на территории Родниковского месторождения.

Рис. 1. Цикл обработки известняка. GIF-анимация, 13 кадров, зацикленное повторение, 23,1 кб .

На рисунке:

  1. Флюсовый известняк
  2. Известь
  3. Доломит
  4. Выплавка стали
  5. Стальные слитки
  6. Отходы и пыль
  7. Переработка (отработка)
  8. Многократное использование
  9. Отходы
  10. Конечный продукт (примеры): посуда, товары широкого потребления, автомобили, строительный материал
  11. Повторная обработка
  12. Сырье
  13. Рециркуляция

Данная научная работа имеет связь с Общегосударственной программой развития минерально-сырьевой базы Украины на период до 2030 года по разделу «Неметаллическое сырье для металлургии» подразделу «Флюсовые известняки и доломиты». Она проводится по заданию государственного предприятия КП «Южукргеология» Приазовская КГРЭ.

Цель исследования заключается в изучении факторов изменчивости качества известняков и его пространственного распределения для оптимизации отработки Родниковского месторождения.

Задачи исследования:
1) изучить качество известняков юго-западной части Донбасса;
2) получить статистические характеристики изменчивости качественных показателей известняков;
3) выявить геологические факторы, влияющие на распределение различных показателей качества по различным участкам месторождения;
4) определить зависимость качества известняков от условий залегания;
5) провести сравнительный анализ качества известняков месторождения с техническими требованиями различных отраслей промышленности;
6) разработать практические рекомендации по дальнейшей отработки Родниковского месторождения.

Идея работы заключается в проверке известных теоретических факторов изменения химического состава известняков в Родниковском месторождении.

Объектом исследования является Родниковское месторождение флюсовых известняков Донецкой области.

Предмет – пространственные закономерности распределения качества известняков, их связь с геологическими факторами.

Методы исследования:
- статистическая обработка исходных данных;
- анализ графического материала для выяснения особенностей строения исследуемого объекта (геологическая карта района, гипсометрические планы, стратиграфические колонки и др.);
- составление выборок исходных данных для сравнительной характеристики отдельных элементов объекта;
- пространственный анализ распределения полезных и вредных компонентов полезного ископаемого на исследуемом объекте;
- метод системного анализа результатов обработки для создания моделей изменчивости качества известняков;

Научная новизна полученных результатов. Впервые проанализировано изменение качественных показателей карбонатной толщи юго-западной части Донбасса. Разработаны критерии качества известняков для отработки Родниковского месторождения. Установлены закономерности пространственного распространения изменчивости показателей качества полезного ископаемого.

Практическое значение полученных результатов
Обозначены зоны с высококачественным известняковым сырьем в пределах Родниковского месторождения. Сделаны рекомендации по технологии дальнейшей отработки месторождения.

Личный вклад
Мной были систематизированы ранее проведенные исследования, определены задачи работы, составлены выборки, проведена статистическая обработка и интерпретация данных. На основании проведенных исследований, результаты работы представлены в графическом виде. Составлены практические рекомендации.

Апробация результатов
Вопросы данной работы докладывались на ІІ Всеукраинской научной конференции-школе молодых ученых «Сучасні проблеми геологічних наук», проходившей в Киеве12-15 апреля 2010 года. Мой доклад на тему «Совершенствование технологии разведки и отработки месторождений флюсовых известняков» напечатан в тезисах этой конференции.

Публикации

Волкова Т.П., Рогаченко А.М. Исследование качества известняков с целью оптимизации отработки Родниковского месторождения // Наукові праці ДонНТУ – 2010. – Донецк.

Основная часть

Анализ состояния изученности вопроса
Мной проанализирована литература и фондовые материалы по теме карбонатного сырья в Украине. Особое внимание было уделено изучению нижнекаменноугольных отложений известняков зоны сочленения Приазовского мегаблока Украинского щита и складчатого Донбасса.
Изучение отложений нижнего карбона южно-западной части Донбасса велось рядом геологов, начиная с середины XIX века. В 1928 – 1929 гг. Ротаем О.П. проведено геологическое картирование южно-западной части донбасса в масштабе 1:42000, в результате которого была принята новая индексация стратиграфических зон. В 1947-1951 гг. Укргеолтрестом МЧМ сделана инструментальная геологическая съемка масштаба 1:100000 с целью уточнения дальнейших направлений геологоразведовательных работ по наращиванию балансовых запасов флюсовых ивестняков и доломитов. Впервые поисковые работы на Родниковском месторождении были выполнены Приазовской ГРЭ в 1982-1984 гг. В период с 1985 по 1990 года Приазовской ГРЭ ДГП «Южукргеология» проведены поисково-оценочные работы на Комсомольской площади, в том числе и на Родниковском месторождении.
Изучением геолого-тектонических особенностей залегания карбонатного сырья в зоне сочленения Приазовского мегаблока Украинского щита и складчатого Донбасса занимался ученый А.И. Недошовенко. В его статье «О методике разведки месторождений карбонатного сырья юго-западной части Донбасса», опубликованной в 1977 году, освещена проблема закарстованности исследуемого района и несовершенствование системы геологической разведки подобных участков.
В работе А.В.Канунниковой и В.И. Ремизова «Литологические особенности, постседиментационные изменения и поровое пространство средне-нижнекаменноугольных известняков» (1977г.), исследования карбонатных пород проводились для оценки коллекторов, широко использующихся при поиске нефти и газа. Однако некоторые аспекты их работы могут быть полезны для сравнения химических особенностей известняков Родниковского месторождения.
В научной статье С.А. Мачулиной и М.В. Безуглой «О находке крупных сталактитоподобных образований пирита в известняках нижнего карбона Стыльского карьера юго-западной части Донбасса» (2004г.) указывается причины появления сульфидов серы в карстовых пустотах известняков турнейского возраста.
В работе В.А. Михайлова, М.М. Курило, Н.Ю. Галкина «Определение зависимости между рентабельностью горнодобывающих предприятий и технико-экономическими характеристиками отечественных месторождений флюсового карбонатного сырья» (2005г) рассмотрена проблема обеспечения качественного карбонатного сырья для металлургического производства в связи с увеличением технических требований промышленности к качеству известняков.

Особенности геологического строения юго-западной части Донбасса, тектонических особенностей, химического состава пород нижнего карбона описано в фондовых материалах КП «Южукргеология» Приазовская КГРЭ.

Геологическое строение объекта исследования
Главным районом разведанных запасов флюсовых известняков Украины, является зона сочленения юго-западной части Донецкой складчатой структуры с Приазовским блоком Украинского щита. Здесь сконцентрированы 38 % разведанных запасов флюсовых известняков и 20 % известняков доломитизированных. Продуктивной является моноклинально залегающая известняково-доломитная толща турнейского и визейского ярусов нижнего карбона мощностью до 500 м. Отложения визейского яруса представлены, главным образом, известняками, а турнейского яруса – чередованием слоев известняка, доломита и доломитизированных известняков. Также встречаются глинистые и окремненные известняки, известняк со сланцем. Мощность карбонатной толщи колебается от нескольких до 100 и больше метров.
Основным поставщиком известняка для конвертерного производства является Комсомольское рудоуправление. Его сырьевая база представлена Каракубским месторождением флюсовых известняков. Действующие карьеры - Северный, Южный, Жеголевский. Карьер Дальний полностью отработан и затоплен. Запасов Каракубского месторождения хватит до 2015 года при достигнутой мощности предприятия в 7 млн тонн сырого известняка в год. Пополнение дефицита высококачественного флюсового сырья планируется за счет введения в эксплуатацию Родниковского месторождения.
В геолого-структурном отношении Родниковское месторождение известняков расположено в юго-западной части зоны сочленения складчатой структуры Донбасса с Приазовским мегаблоком Украинского щита. Оно приурочено к полосе распространения пород визейского и турнейского ярусов нижнего карбона, которые слагают южное крыло Кальмиус-Торецкой котловины. Продуктивными толщами являются известняки турнейского и визейского яруса нижнего карбона. Мощность полезного ископаемого составляет 72,4 м на Восточном участке месторождения и 90,3 м – на Западном (подсчитаны запасы до горизонта?7м). Отложения визейского яруса представлены, в основном, известняками. Турнейский ярус отличается чередованием слоев, главным образом, известняка, доломита, доломитизированных известняков с прослоями глинистых, окремненных известняков, сланцевых известняков. Карбонатные породы турнейского и визейского ярусов относятся к типу органогенных, преимущественно мелкодетритусовых, слабометаморфизованных пород. В них, как сингенетические образования, встречаются кремни разной формы. Это доказывает хемогенность процесса образования известняков. Большая роль химического процесса в образовании доломита подтверждается малым наличием ископаемой фауны в доломитизированных породах, которая постепенно изменяется в доломитизованных или обычных известняках.
В зависимости от химического состава и содержания лимитирующих компонентов среди известняков Родниковского месторождения выделяются: ферросплавные, конверторные, доменные. При этом почти 70% от всех запасов месторождения составляют конверторные известняки. Для контроля массовой доли SiO2 карбонатные породы предварительно обжигаются в специальных известнякобжигающих агрегатах с получением конверторного известянка. Запасы карбонатных пород Родниковского месторождения подсчитаны по данным предварительной разведки (табл 2). Данные по состоянию запасов флюсовых известняков Родниковского месторождения предоставлены предприятием КП «Южукргеология» Приазовская КГРЭ.

Методика исследований и фактические данные

Описание фактических данных
На первом этапе работы был проведен анализ геологической документации, содержащей сведения о литологии и тектонике участка исследований, отобраны данные для выборки, по которым рассчитаны статистические показатели и определены корреляционные связи для каждого стратиграфического пласта в отдельности. Наибольшую информативность имеет качественный показатель СаО. Он является определяющим критерием при сортировке известняков. Для всех показателей рассчитаны максимальные и минимальные значения, среднее значение показателя и стандартное отклонение, характеризующее степень изменчивости показателя. По статистическим характеристикам определены особенности изменчивости качественных показателей по отдельным пластам и в целом, по мощности. Проведен сравнительный анализ между результатами статистической обработки данных по отдельным пластам и по всей полезной толщи месторождения. При проведении пространственного анализа выявлены участки с высококачественным известняковым сырьем.
Исходными данными для количественного исследования закономерности распространения качества известняков являются пространственно привязанные данные химических анализов секционных проб по пластопересечениям разведочных скважин Родниковского месторождения. Выборка включает в себя 2270 секционных проб (при средней длине секции равной 2,0 м). Пробы отобраны Приазовской КГРЭ. В пробах определены следующие качественные показатели: СаO, MgO, SiO2, Al2O3+Fe2O3, S, P. На месторождении были проведены предварительные геолого-разведовательные работы. Выделены геологические блоки с категориями запасов С1 и С2. Площадь месторождения покрыта сетью разведочных скважин с расстоянием между ними: по категории запасов С1 - 200?200 м, по категории запасов С2 - 400?400 м. Бурение скважин проводилось до горизонта с абсолютной отметкой -7 м.

Выбор и описание методики обработки данных
Имеющиеся данные организованы для обработки следующим образом:
- составлены выборки по отдельным стратиграфическим пластам, служащие для исследования влияния геологических факторов на качество известняков;
- составлены выборки по всей мощности месторождения в целом для сравнения пространственного распределения качества и выявления общих закономерностей.

Для решения задач поставленных в этой работе выбраны следующие методы:
- статистический анализ, позволяющий охарактеризовать массив данных, выявить связи между различными показателями;
- анализ графического материала, который дает возможность подробно рассмотреть геологическое строение объекта;
- пространственный анализ, при помощи этого метода осуществляется выделение пространственных закономерностей распределения показателей и их привязка к геологическим структурам объекта;
- метод системного анализа результатов обработки по генезису полезного ископаемого и пространственному положению изучаемого объекта;
- обобщение результатов для создания моделей изменчивости качества полезного ископаемого.

Интерпретация результатов
Для месторождений известняков определяющими показателями качества являются показатели СаO, MgO, SiO2, Al2O3+Fe2O3, S, P. Содержание СаО является основным показателем качества известняков. Для получения точных сведений о причинах и закономерностях его изменчивости, была проведена статистическая обработка данных. По результатам проведенных анализов выявлено неоднородное распределение основного качественного показателя СаО в Родниковском месторождении (рис 1).



Рис. 2. Гистограмма изменчивости показателя СаО в Родниковском месторождении а) по пласту С1vb+c; б) по всем слоям продуктивной толщи.

Гистограммы изменчивости показателя СаО имеют ступенчатый одновершинный вид, что доказывает соответствие исследуемого признака зеркально-логнормальному закону распределения. Присутствие пустых интервалов свидетельствует о неоднородности геологической среды. Это объясняется слоистым строением продуктивных толщ визейского и турнейского ярусов нижнего карбона, наличием карстовых пустот и разрывных нарушений. На рис.1а изображена гистограмма изменчивости показателя СаО по одному из стратиграфических пластов продуктивной толщи Родниковского месторождения. На рис.1б приведена гистограмма изменчивости усредненного показателя по всей продуктивной толщи месторождения. Размах между минимальным и максимальным значениями показателя СаО по пласту C1vb+c составляет (рис. 1а) 7,06, а по продуктивной толщи в целом – 19,32 (рис.1б). При осреднении данных происходит значительное снижение значения показателей качества известняков (CaO + MgO). Такое отличие объясняется тем, что в продуктивной толще месторождения, представленной отложениями визейского и турнейского ярусов, встречаются некондиционные прослои пород известняка с низким содержанием СаО и непродуктивные добавки в виде аргиллитов, алевролитов, песчаника. Самые высококачественные известняки встречаются в стратиграфических пластах C1vb+c, C1td, C1tb.
Распределение изменчивости качественного показателя MgO – зеркальнообратно изменчивости показателя СаО. Это вызвано зависимостью содержания MgO в толще известняков от развития (интенсивности) процессов доломитизации:

2CaCO3 + MgSO4 + 2H2O - CaMg(CO3)2 + CaSO4 2H2O.

При этом Mg2+ замещает Са2+ в кристаллической решетке известняка СаСО3.
Изменение показателя СаО связано со слоистостью месторождения и с изменением минерального и химического состава следующих пород, а также их примесей:
- известняка (доломита, кальцита);
- глины (каолинита Al4(OH)8);
- ортофира (содержание кальцита, каолинита, хлорита);
- плагиопорфира (плагиоклазов);
- сульфидсодержащих пород.
Изменение значения показателя СаО в Родниковском месторождении находит объяснение не только в слоистом строении продуктивной толщи, но и в протекающих процессах доломитизации, окремнения, кальцитизации и выщелачивания.
Наличие значимой отрицательной корреляционной связи между показателями СаО и MgO (равна -0,6, уровень значимости < 0.05) объясняется замещением оксида кальция оксидом магния в процессе доломитизации породы. Основная часть доломитизированных пород образовалась на стадии седиментации карбонатных отложений и связана с процессами диагенетической доломитизации. Также имеет место эпигенетическая доломитизация, вызываемая действием подземных вод, обогащенных магнием. Она приурочена к трещиноватым известнякам и карстовым пустотам.
Отрицательная корреляционная связь СаО и SiO2 (равна -0,31) объясняется изменением значения показателя СаО, связанное с окремнением известняков. В карбонатных породах, слагающих Родниковское месторождение, как сингенетическое образование, встречается кремни разной формы. Причиной возникновения кремния в известняках являются химические реакции, происходящие на стадии седиментации известняков и наличие карстовых пустот, способствующих протеканию процесса окремнения. Карстовые пустоты возникли в результате размыва толщи грунтовыми и поверхностными водами, а также в результате деятельности тектонических нарушений. Карстовые полости, в зависимости от наличия непосредственной связи с поверхностью, могут быть заполнены рыхлыми песчано-глинистыми отложениями – это подтверждается наличием значимой отрицательной связи между показателями СаО и Al2O3+Fe2O3 (равна -0,3).
Проведен пространственный анализ распределения качественного показателя СаО.


Рис. 3. План распределения показателя СаО в продуктивной толще восточного участка Родниковского месторождения.

Значение показателя оксида кальция на востоке распространено крайне неравномерно (рис. 2). Поле карты распределения показателя СаО имеет сложное строение, что подтверждается наличием нескольких минимумов и максимумов, неравномерно размещенных на изучаемом объекте. Большую часть карты занимают известняки с процентным содержанием СаО равным 46 – 48 %. В центре описываемой территории наблюдается чередование минимумов и максимумов содержания показателя. Наименьшее значение показателя СаО приурочено к южной части Родниковского месторождения, что объясняется прохождением субгоризонтального тектонического разрывного нарушения и выходом на поверхность протерозойского гранитоидного массива. Максимальное значение СаО в центре описываемой территории подтверждается геологическим строением участка. Здесь отсутствуют тектонические нарушения, карстовые пустоты и расположены наиболее качественные известняки, имеющие большую мощность и малую долю примесей вредных компонентов (SiO2, Al2O3+Fe2O3, S, P).
По результатам химического анализа послойно исследовано распределение качества известняков на месторождении. Выявлены слои с повышением и понижением качественных характеристик полезного ископаемого, исследованы причины их изменения. С целью установления закономерности изменения качества известняков Родниковского месторождения проводилась статистическая обработка данных с последующим сравнением изменения каждого из показателей качества (табл. 1).

Табл. 1. Значения качественных показателей известняков восточной части Родниковского месторождения.

Качест-венные
показа-тели
извест-няков

Среднее значение показателей качества по всей продуктивной толщи

Средние значения показателей
качества по стратиграфическим пластам продуквтивной толщи

Al2O3+
Fe2O3

Как видно из таблицы 1, при осреднении значений показателей на всю мощность продуктивной толщи месторождения происходит снижение качества, в сравнении с послойными значениями: полезные компоненты (CaO и MgO) уменьшаются; вредные – увеличиваются.

Практические выводы и рекомендации
- Таким образом, было детально изучено качество известняков юго-западной части Донбасса.
- Полученные статистические характеристики изменчивости качественных показателей известняков по отдельным стратиграфическим пластам и по всей полезной мощности значительно отличаются. Средние содержания качественных показателей известняков на конкретном горизонте Родниковского месторождения различны. Выявлено снижение качественных характеристик при осреднении показателей по всей полезной мощности месторождения в 3 раза.
- Снижение качества известняков вызвано процессами доломитизации, окремнения, кальцитизации и выщелачивания. Самым негативным фактором является карстообразование.
- В связи с отличием качественных характеристик отдельных стратиграфических слоев месторождения, рекомендуется подсчитывать запасы для каждого конкретного потребителя отдельно.
- Отработку Родниковского месторождения следует проводить послойно с учетом различия строения стратиграфических пластов продуктивной толщи. В этом случае, сорт будет соответствовать техническим условиям определенной промышленности. Известняки возраста C1vb+c соответствуют техническим условиям для доменного, металлургического, сталеплавильного производства. Известняки C1td могут использоваться в качестве сырого материала для металургии. Породы возраста С1vd, C1tc, C1tb могут применяться в сталеплавильной, ферросплавной промышленности, производстве строительной извести и цемента.

Литература:

1. Блоха Н. Т. Карбонатные породы производства строительной извести / Н. Т. Блоха, В. И. Кольбах, В. С. Марков – М.: Недра, 1980. – 52 с.

2. Волкова Т. П.,Вершинин А. С. Методика геолого-технологического картирования месторождений каолинов.// Горный журнал. Известия 1393.6 / – Донецк, 1993. - № 4. – С. 12-18

3. Ляхов Г. М. Нерудные ископаемые – известняки, глины, обломочные горные породы./ Г. М. Ляхов, Н. Д. Рождественский – М.: Недра, 1948. – 116 с.

4. Постникова И. Е. Методы изучения карбонатных формаций платформенных областей./ В. А. Крыжановский, И. Е. Постникова – М.,Недра, 1988. – 205 с.

5. Салов И. Н. Известняки Смоленской области./ И. Н. Салов – Смоленская область, 1952. – 56с.

6. Флюс, в металлургии Энциклопедический словарь Брокгауза и Ефрона А. В. Митинский: [Электронный ресурс]. – Режим доступа.

Известняки (в широком понимании) имеют чрезвычайно многообразные области применения. Они используются в виде кускового известняка, щебня, дробленого песка, минерального порошка, минеральной ваты, известняковой муки. Основные потребители – цементная промышленность (известняк, мел и мергель), строительство (получение строительной извести, бетонов, штукатурки, строительных растворов; кладка стен и фундаментов, металлургия (известняк и доломит – флюсы и огнеупоры, переработка нефелиновых руд на глинозем, цемент и соду), сельское хозяйство (известняковая мука в агротехнике и животноводстве), пищевая (особенно сахарная). В Янтиковском районе известняк добывается карьерами в с. Янтиково, с. Можарки.

Район известен обилием известковых камней, обжиг извести здесь проводился с незапамятных времен. В 1982 году на левой стороне реки Соломинка, был открыт известковый карьер. Эту используют для удобрения почвы колхозов и совхозов нашего и других соседних районов республики. На карьере ежегодно добывают 45 тыс. тон извести.

По подсчетам геологов в Можарском карьере залежи известняка составляют около 15 млн. тонн, а в Янтиковском карьере – 5 млн. тонн.

В программе социально-экономического развития Янтиковского района на 2007-2010 года указаны основные задачи по повышению эффективности использования природных ресурсов района. Также приведены ожидаемые результаты реализации программы: бюджетная обеспеченность на душу населения возрастет, увеличится уровень среднемесячной заработной платы работающих в отраслях экономики, появятся дополнительные рабочие места обеспечивающие эффективную занятость населения, увеличится объем выпуска производства промышленной продукции.

Янтиковский район входит в зону, где средне-прожиточный уровень населения считается ниже нормы, 66,7% населения района не трудоустроено. Основной проблемой в трудоустройстве безработных и незанятых граждан в районе является недостаток рабочих мест на предприятиях и в организациях района. В связи с этим мы предлагаем уделять внимание к развитию промышленного производства, в частности производства щебня, цемента, сахара. А для производства цемента и сахара, природное сырье должно иметь высокое качество. Поэтому целью нашей работы является: 1 Изучить качественный и количественный состав известняка 2-х карьеров на территории Янтиковского района.

Известняк, осадочная порода, сложенная преимущественно карбонатом кальция – кальцитом. Благодаря широкому распространению, легкости обработки и химическим свойствам известняк добывается и используется в большей степени, чем другие породы, уступая только песчано-гравийным отложениям. Известняки бывают разных цветов, включая черный, но чаще всего встречаются породы белого, серого цвета или имеющие коричневатый оттенок. Объемная плотность 2,2–2,7. Это мягкая порода, легко царапающаяся лезвием ножа. Известняки бурно вскипают при взаимодействии с разбавленной кислотой. В соответствии со своим осадочным происхождением имеют слоистое строение. Чистый известняк состоит только из кальцита (редко с небольшим содержанием другой формы карбоната кальция – арагонита). Присутствуют и примеси. Двойной карбонат кальция и магния – доломит – обычно содержится в переменных количествах, и возможны все переходы между известняком, доломитовым известняком и горной породой доломитом.

Хотя известняки могут образовываться в любых пресноводных и морских бассейнах, преобладающее большинство этих пород имеет морское происхождение. Иногда они осаждаются, подобно соли и гипсу, из воды испаряющихся озер и морских лагун, но, по-видимому, большая часть известняков отложилась в морях, не испытавших интенсивного высыхания. По всей вероятности, формирование большинства известняков начиналось с извлечения живыми организмами карбоната кальция из морской воды (для построения раковин и скелетов). Эти остатки отмерших организмов в изобилии накапливаются на морском дне. Самым ярким примером аккумуляции карбоната кальция служат коралловые рифы. В некоторых случаях в известняке различимы и узнаваемы отдельные раковины. В результате волно-прибойной деятельности и под влиянием морских течений рифы разрушаются. К известковым обломкам на морском дне добавляется карбонат кальция, осаждающийся из насыщенной им воды. В образовании более молодых известняков участвует также кальцит, поступающий из разрушенных более древних известняков.

Известняки встречаются почти на всех материках, за исключением Австралии. В России известняки обычны в центральных районах европейской части, а также распространены на Кавказе, Урале и в Сибири.

1. 2 Цемент

Цемент – это вяжущий порошкообразный материал, который образует пластическую массу, способную постепенно затвердевать в камень. Он состоит в основном из трикальциевого силиката 3 CaO SiO2.

В состав цемента могут входить разные добавки, массовое отношение оксидов определяет техническую пригодность цемента. Кремнезем входящий в его состав, связывает оксиды кальция, алюминия; при этом образуются следующие соединения силикаты – 3CaO SiO2 nH2O, 2CaO SiO2 nH2O; гидроалюминаты - 3CaO X AI2 O3 6H2O; алюмоферриты - 4CaO AI2 O3 Fe2O3.

Наиболее распространенной разновидностью цемента является портландцемент. Он обладает большой механической прочностью, устойчивостью в воздухе и под водой, морозостойкостью. Основным сырьем для производства портландцемента являются известняк и глина, содержащие оксид кремния (IV).

Известняк и глину тщательно перемешивают и их смесь обжигают в наклонных цилиндрических печах, длина которых достигает более 200 м, а в поперечнике – около 5 м. В процессе обжига печь медленно вращается и исходные материалы постепенно движутся к нижней ее части на встречу раскаленных газов – продуктов сгорания поступающего газообразного или твердого пылевидного топлива.

При повышенной температуре между глиной и известняком происходят сложные химические реакции. Простейшие из них являются обезвоживание каолинита, разложение известняка и образование силикатов и алюминатов кальция:

Al2O3 2SiO2 2H2O → Al2O3 2SiO2 + 2H2O

CaCO3 → CaO + CO2

CaO + SiO2 → CaSiO3

Образовавшиеся в результате реакций вещества спекаются в виде отдельных кусков. После охлаждения их размалывают до тонкого порошка.

Процесс затвердевания цементного теста объясняется тем, что различные силикаты и алюминаты, входящие в состав цемента, реагируют с водой с образованием каменистой массы. В зависимости от состава изготавливают различные сорта цемента.

1. 3 Гашенная известь. Гидроксид кальция используется для производства сахара

Сахарная свекла подается на завод гидравлическим транспортером и с помощью насосов подается в свекломойку. Промытая свекла поднимается элеватором 15-17 м и подает с в свеклорезку, где она измельчается, превращается в тонкую стружку. Свекловичная стружка поступает в диффузионные аппараты. Первейшая задача производства заключается в том, чтобы а полнее выделить сахар из свеклы. С этой целью через диффузоры пропускают горячую воду на встречу движущейся стружке (свекловидный жом) массовая доля сахарозы не превышает 0,5%. Диффузионный сок представляет собой непрозрачную темную жидкость. Темный цвет придают пигменты, которые относятся несасарам.

И задачей другой стадии производства заключается в том, чтобы освободить раствор сахарозы от примесей. Чтобы освободить раствор сахарозы от примесей сверху в него заливают известковое молоко из расчета 20-30 кг гидроксида кальция Cu(OH)2 на 1 кг свеклы. Под действием гидроксида кальция происходит нейтрализация диффузионного сока.

Глава 2. Экспериментальная часть работы

2. 1 Определение CaCO3 в известняке.

Наиболее простой способ определения CaCO3 в известняке заключается в том, что определенную навеску образца средней пробы известняка обрабатывают избытком титрованного раствора соляной кислоты и не вошедшей в реакцию c CaCO3 избыток HCl подвергают обратному титрованию раствором едкой щелочи. По количеству HCl, пошедшей на разложение известняка вычисляют содержание CaCO3 в известняке.

Для анализа образец средней пробы известняк (200 г) растирали в ступке, пропускали через сито в 0,5 мм отсюда отбирали новую среднюю пробу в количестве 40 г. Затем из этой средней пробы брали навеску около 2 г, поместили ее в мерную колбу емкостью на 500 мл, смачивали 5 миллитрами дистиллированной воды и осторожно приливали 50 мл 1,0-нормалного раствора соляной кислоты. После выделения углекислоты в колбу приливали 300 мл дистиллированной воды и содержимое колбы в течение 15 мин. кипятили (до полного прекращения выделения CO2). По окончании кипячения раствору дали остыть, долили в колбу до метки дистиллированной водой, перемешали и дали осадку осесть на дно колбы. После этого отобрали отсюда пипеткой 100 мл прозрачного раствора, перенесли их в коническую колбу емкостью на 250 мл и титровали 0,1-нормальным раствором едкой щелочи в присутствии 2 – 3 капель метилоранжа до появления слабо – желтой окраски раствора.

(a KHCl – bKщ) 0,005*500*100

Где a – количество миллилитров раствора, взятого для титрования; в данном случае а = 100 мл; b – количество миллиметров 0,1- нормального раствора едкой щелочи, пошедшей на титрование избытка HCl;

KHCl и Kщ - поправки на нормальность кислоты (KHCl)и щелочности,(Kщ);

0,005 – количество граммов CaCO3 , отвечающих 1 мл 1,0 – нормального раствора кислоты;

Р – навеска известняка.

CaCO3+2HCl → CaCl2+CO2+H2O

2. 2 Характерные и специфические реакции катионов магния

Общедоступных специфических реакций на катионы магния в настоящее время не имеется. Из общеаналитических реакций наиболее характерными для них являются: взаимодействие с кислым фосфорнокислым натрием.

Образование двойной фосфорнокислой магний - аммонийной соли.

К воде, где содержались соли магния приливают NH4OH до прекращения образования осадка гидрата окиси магния:

MgCl2 + 2NH4OH = ↓Mg(OH)2 + 2NH4Cl2

Затем сюда же приливают раствор хлористого аммония до полного растворения полученного гидрата окиси магния:

Mg(OH)2 + 2NH4Cl = Mg Cl2 + 2NH4OH

К полученному аммонийному раствору магниевой соли осторожно, по каплям приливают разбавленный раствор Na2HPO4. При этом из раствора выпадают мелкие белые кристаллы MgNH4PO4, часть которых в виде едва заметной пленки как бы «ползет» вверх по стенкам пробирки. Если при действии Na2HPO4 осадок образовался аморфный, для его растворения добавляют несколько капель HCl, после чего приливают раствора Na2OH и снова производят осаждение MgNH4PO4. Предельная открываемая концентрация катионов этой реакцией равна 1,2 мг/л.

Так как образование белых кристалликов MgNH4PO4 не наблюдались, значит концентрация катионов магнии

2. 3 Определение pH

Для характеристики водных растворов электролитов условно принято использовать концентрацию ионов H+. При этом для удобства величину этой концентрации выражают через так называемый водородный показатель – pH.

Водородный показатель – это отрицательный логарифм молярной концентрации ионов водорода в растворе: pH = -1g

В чистой воде, очевидно, pH = 7. Если pH 7, то раствор щелочной.

pH водных растворов определяли универсальным индикатором. В таблице приведены значения pH водных растворов известняка.

Результаты исследования двух карьеров

Месторождение карьера Содержание CaCO3 Содержание MgCO3 pH

С. Янтиково 87% >9% 8,0-8,5

С. Можарки 94,81%

1. Исследования показывают, что известняк из Можарского известкового карьера содержит 94,81% CaCO3 и 5,19% примесей.

2. Процентное содержание CaCO3 в известняке из Можарского карьера оказалась выше, чем в известняке из Янтиковского.

3. Так как по качеству и составу известняк из Можарского карьера лучше, он соответствует технологическим стандартам для производства цемента.

4. В Янтиковском районе в перспективе можно построить завод по производству сахара.

Ожидаемые результаты

Бюджетная обеспеченность на душу населения возрастет, увеличится уровень среднемесячной заработной платы работающих в отраслях экономики, появятся дополнительные рабочие места обеспечивающие эффективную занятость населения, увеличится объем выпуска производства промышленной продукции.

Настоящий руководящий нормативный документ устанавливает методы для определения химического состава известняков флюсовых.

Методы, приведенные в настоящем документе, применяются у производителя при отгрузке и у потребителя при поступлении продукции.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Все реактивы должны иметь квалификацию не ниже ч.д.а. Дистиллированная вода для приготовления раствора реактивов и проведения анализа - по ГОСТ 6709-72 и деионированная.

1.2. Определение массовой доли элементов проводят в двух параллельных навесках, взвешенных со случайной погрешностью 0,0002 г.

1.3. Значение суммарной погрешности среднего результата анализа контролируется не реже одного раза в смену путем проведения одновременно с анализом пробы и в тех же условиях анализа стандартного образца. Для контроля выбирают стандартный образец с химическим составом, соответствующим требованиям данного документа на методику определения массовой доли элементов. Средний результат анализа стандартного образца не должен отличаться от значения массовой доли определяемого элемента более, чем на половину величины допускаемого расхождения для соответствующего интервала массовой доли элемента. В противном случае определение массовой доли элемента анализируемой пробы в стандартном образце повторяют. Результаты повторного анализа считают окончательными.

1.4. За окончательный результат анализа принимают среднее арифметическое результатов двух параллельных измерений при условии, что расхождение между результатами параллельных измерений не должно превышать допускаемые при доверительной вероятности 0,95 расхождения, приведенные в табл. .

Таблица 1

Массовая доля элемента, %

Допускаемые расхождения, абс. %

Окись кальция

от 40,0 до 50,0

св. 50,0 « 60,0

Окись магния

св. 2,0 « 5,0

Нерастворимый остаток

св. 0,5 « 1,0

от 0,005 до 0,01

св. 0,01 « 0,02

от 0,015 « 0,03

св. 0,03 « 0,05

Раствор с объемной долей соляной кислоты 0,5; 0,06 - по ГОСТ 3118-77 .

Лодочки фарфоровые прямоугольные - по ГОСТ 9147-80 К, тигли фарфоровые низкие - по ГОСТ 9147-80 Е.

Фильтры обеззоленные «белая лента», фильтровальная бумага с известным содержанием золы или фильтры средней плотности.

2.2.3. Алгоритм операций по подготовке растворов к анализу

Раствор с объемной долей соляной кислоты 0,5 готовят следующим образом: одну объемную часть раствора соляной кислоты с массовой концентрацией 1,19 г/см3 смешивают с таким же объемом воды и тщательно взбалтывают.

Раствор с объемной долой соляной кислоты 0,05 готовят следующим образом: пять объемных частей раствора соляной кислоты с массовой концентрацией 1,19 г/см3 смешивают с 95 такими же объемами воды и перемешивают.

2.2.4. Алгоритм выполнения измерений

Навеску воздушно-сухой пробы весом 1 г помещает в коническую колбу емкостью 100 см3, предварительно смоченную водой. Приливают осторожно 15 см3 раствора с объемной долой соляной кислоты 0,5, нагревают до кипения и кипятят в течение 3 мин.

Осадок промывают фильтрованием через беззольный фильтр «белая лента» или фильтровальную бумагу. Промывают стенки колбы два раза горячим раствором с объемной долей соляной кислоты 0,06, протирают кусочком фильтра и отмывают осадок пять раз горячей водой.

Фильтр с нерастворимым остатком помещают во взвешенную фарфоровую лодочку или тигель, озоляют и прокалывают при температуре 900 °С в течении 20 мин. Остывший осадок взвешивают.

2.2.5. Обработка результатов анализа

Массовую долю нерастворимого остатка (Х) в процентах вычисляют по формуле

где м - найденная масса нерастворимого остатка, г;

М1 - масса осадка контрольного опыта, г;

М - навеска пробы, г.

2.3. Определение массовой доли окиси кальция

2.3.1. Метод измерений

Метод основан на определении окиси кальция комплексно-метрическим титрованием с индикатором кислотным хром-темносиним при рН 12. Влияние трехвалентных железа и алюминия устраняют маскирующей смесью или триэтиламином, связывая их во фторидный комплекс. Допускается использовать индикаторы флуорексон и мурексид.

2.3.2. Средства измерений, вспомогательные устройства, реактивы

ГОСТ 1770-74 Е.

ГОСТ 25336-82 Е.

гост 3760-79 .

Раствор с объемной долей соляной кислоты 0,33 - по ГОСТ 3118-77 .

Раствор гидрата окиси калия с массовой концентрацией 20 г/см3.

Соль двунатриевая этилендиаминтетрауксусной кислоты (трилон Б), молярная концентрация эквивалента трилона Б равна 0,025 моль/дм3 - по ГОСТ 10652-73 .

Цинк гранулированный.

Триэтаноламин - по ТУ 6-09-2448-86.

Бумага конго.

Допускается применение импортных реактивов и посуды.

2.3.3. Алгоритм операций по подготовке растворов к анализу

Раствор молярной концентрации эквивалента соли цинка, равный точно 0,05 моль/дм3, готовят следующим образом: 1,6345 г цинка металлического взвешивают со случайной погрешностью ± 0,0002 г помещают в фарфоровую чашку и растворяют при нагревании на водяной бане в смеси 100 см3 воды и 15 см3 азотной кислоты, накрыв чашку стеклом. Затем тщательно смывают стекло водой, собирают ее в ту же чашку и упаривают раствор до 3 - 4 см3. Остаток из чашки количественно переносят, смывая стенки чашки водой, в мерную колбу вместимостью 1 дм3 и доводят объем до раствора до метки водой. Раствор годен в течение месяца.

Молярную концентрацию эквивалента трилона Б, равную 0,025 моль/дм3 готовят следующим образом: 9,31 г трилона Б растворяют в воде и доводят объем водой до 1 дм3. Раствор сохраняют в полиэтиленовых или стеклянных, парафинированных изнутри, сосудах.

Буферный раствор рН 9,5 ... 10 готовят следующим образом: 70 г аммония хлористого растворяют в 1000 см3 аммиака водного, раствор 1:1.

Маскирующую смесь готовят следующим образом: 15 г фтористого натрия растворяют при нагревании в 1 дм3 воды и добавляют 20 см3 триэтаноламина.

Индикаторы готовят следующим образом: 0,250 г индикатора растирают в ступке с 25 г натрия хлористого или 1 г индикатора растворяют в 10 см3 буферного раствора рН 9,5 ... 10 и доводят объем дистиллированной водой до 100 см3.

Молярную концентрацию эквивалента трилона Б, равную 0,5 моль/дм3, определяют по раствору соли цинка следующим образом: к 25 см3 соли цинка с молярной концентрацией эквивалента 0,05 моль/дм3 прибавляют 5 см3 буферного раствора, около 0,1 г индикатора эриохрома черного Т и 70 см3 воды. Раствор перемешивают и титруют раствором трилона Б до перехода фиолетово-красной окраски в синюю.

Молярную концентрацию эквивалента трилона Б, равную 0,05 моль/дм3, вычисляют по формуле

где У - объем трилона Б с молярной концентрацией эквивалента 0,005 моль/дм3, израсходованный на титрование, см3.

Массовую концентрацию трилона Б (Т) по окиси кальция в г/см3 вычисляют по формуле

где N - молярная концентрация эквивалента;

28,04 - грамм-эквивалент окиси кальция.

Кроме указанного способа допускается установка массовой концентрации трилона Б по стандартному образцу.

2.3.4. Алгоритм выполнения измерений

Навеску воздушно-сухой пробы 0,5 г растворяют в 30 см3 раствора в объемной долей соляной кислоты 0,33 в конической колбе вместимостью 250 см3 при нагревании и кипятят в течение 3 мин. Раствор переводят в мерную колбу емкостью 250 см3, добавляют объем водой до метки, тщательно перемешивают.

Для определения массовой доли окиси кальция отбирают 50 см3 приготовленного раствора в коническую колбу вместимостью 500 см3, разбавляют водой до 200 см3, вводят 5 см3 маскирующей смеси или 5 ... 7 капель триэтаноламина, добавляют (15 ... 20) см3 раствора трилона Б, нейтрализуют раствором гидрата окиси калия с массовой концентрацией 20 г/см3 по индикаторной бумаге конго, дают на избыток около 10 см3 щелочи (рН 12 - 13); 0,10 - 0,15 г или 4 - 6 капель индикатора кислотного хром темно-синего и продолжают добавлять трилон Б до перехода окраски из малиновой в фиолетовую. Титрование допускается производить не только, но и разного рода титраторами в соответствующей посуде.

2.3.5. Обработка результатов

Массовую долю окиси кальция (Х) в процентах получают по формуле

где У - объем трилона Б, израсходованный на титрование, см3;

Т - массовая концентрация трилона Б по окиси кальция, г/см3;

М - навеска пробы, содержащаяся в аликвотной части раствора, г.

2.4. Определение массовой доли окиси магния

2.4.1. Метод измерений

Метод основан на тетраметрическом определении ионов магния после осаждения кальция в виде оксалата.

2.4.2. Средства измерений, вспомогательные устройства, реактивы

Весы аналитические с разновесами.

Стаканы и колбы стеклянные лабораторные - по ГОСТ 25336-82 Е.

Посуда мерная лабораторная стеклянная.

Цилиндры, мензурки, колбы - по ГОСТ 1770-74 Е.

Приборы мерные лабораторные стеклянные.

Пипетки, бюретки - по ГОСТ 20292-74Е.

Раствор с объемной долей соляной кислоты 0,5 - по ГОСТ 3118-77 .

Магний сернокислый - по ТУ 6-09-2540-87.

Раствор щавелекислого аммония с массовой долей 4 % - по ГОСТ 5712-78 .

Раствор аммиака с массовой концентрацией 25 г/см3 - по ГОСТ 3760-79 .

Индикатор метиловый оранжевый - по ТУ 6-09-5171-84.

Индикатор эриохром черный Т - по ТУ 6-09-1760-72.

Индикатор кислотный хром темно-синий - по ТУ 6-09-3870-84.

Фильтры обеззоленные «белая лента» или фильтровальная бумага с известным содержанием золы.

Допускается применение импортных реактивов и посуды.

2.4.3. Алгоритм операций по подготовке растворов к анализу

Аммиачный буферный раствор с рН 9,5 готовят следующим образом: 70 г аммония хлористого растворяют в 1000 см3 аммиака водного, раствор 1:1.

Молярную концентрацию эквивалента сернокислого магния, равную точно 0,1 моль/дм3, готовят следующим образом: содержимое одной ампулы фиксанала сернокислого магния количественно переносят в мерную колбу емкостью 1 дм3 и доводят водой до метки.

Молярную концентрацию эквивалента трилона Б, равную 0,025 моль/дм3, готовят следующим образом: 9,31 г трилона Б растворяют в воде и доводят до 1 дм3.

Индикаторы готовят следующим образом: 0,250 г индикатора растирают в ступке с 25 г натрия хлористого или 1 г индикатора растворяют в 10 см3 буферного раствора рН 9,5 - 10 и доводят объем дистиллированной водой до 100 см3.

Молярную концентрацию эквивалента трилона Б, равную 0,5 моль/дм3, определяют по раствору соли цинка следующим образом: к 25 см3 соли цинка с молярной концентрацией эквивалента 0,006 моль/дм3 прибавляют 5 см3 буферного раствора, около 0,1 г индикатора эриохрома черного Т и 70 см3 воды. Раствор перемешивают и титрируют раствором трилона Б до перехода фиолетово-красной окраски в синюю.

Молярную концентрацию эквивалента трилона Б, равную 0,05 моль/дм3, вычисляют по формуле

где У - объем трилона Б с молярной концентрацией эквивалента 0,005 моль/дм3, израсходованный на титрирование, см3.

Массовую концентрацию трилона Б (Т) по окиси магния в г/см3 вычисляют по формуле

где N - молярная концентрация эквивалента;

20,16 - грамм-эквивалент окиси магния.

Допускается также установка массовой концентрации трилона Б по стандартному образцу и синтетическим смолы стандартных образцов.

2.4.4. Алгоритм выполнения измерений

Навеску воздушно-сухой пробы 0,5 г растворяют в 20 см3 раствора с объемной долей соляной кислоты 0,5 в конической колбе вместимостью 250 см3 при нагревании и кипятят в течение 3 мин. К раствору приливают 50 см3 горячей воды, 20 см3 раствора щавелевокислого аммония с массовой концентрацией 4 г/см3, дают закипеть, вводят 1 - 2 капли индикатора метилоранжа и нейтрализуют раствором аммиака с массовой долей 0,5. Осадок отфильтровывает через фильтр средней плотности, стенки колбы и фильтр с осадком промывают холодной водой. Фильтрат и промывание воды собирают в мерную колбу вместимостью 250 см3, доводят до метки водой и тщательно перемешивают. В коническую колбу емкостью 250 см3 отбирают 50 см3 фильтрата, приливаю 50 см3 воды, 5 см3 аммиачного буферного раствора, 0,1 - 0,2 г индикаторной смеси кислотного хром темно-синего или 4 - 5 капель раствора индикатора и титрируют раствором трилона Б до перехода окраски из розовой в фиолетовую.

2.4.6. Обработка результатов

Кассовую долю окиси магния (X) в процентах вычисляют по формуле

где У - объем трилона Б, израсходованный на титрование, см3;

Т - массовая концентрации трилона Б по окиси магния, г/см3;

М - навеска пробы, содержащаяся в аликвотной части раствора, г.

2.5. Определение массовой доли серы - по ГОСТ 23581.20-81 или методикам флюсодобывающих предприятий, утвержденным ИСО ЦНИИЧМ.

2.6. Определение массовой доли фосфора

2.6.1. Метод измерений

Метод основан на образовании фосфороанадиевого молибденового комплексного соединения в присутствии кислоты и фотометрировании окрашенного раствора.

2.6.2. Средства измерений, вспомогательные устройства, реактивы

Весы аналитические с разновесами

Стаканы и колбы стеклянные лабораторные - по ГОСТ 25366-82 Е.

Посуда мерная лабораторная стеклянная.

Цилиндры, мензурки, колбы - по ГОСТ 1770-74 E.

Приборы мерные лабораторные стеклянные.

Пипетки, бюретки - по ГОСТ 20292-74Е.

Раствор с объемной долей азотной кислоты 0,33 - по ГОСТ 4461-77 .

Калий фосфорнокислый однозамещенный - по ГОСТ 4198-75 .

Аммоний молибденовокислый - по ГОСТ 3765-78 .

Аммоний ванадиевокислый - по ГОСТ 9336-75 .

Допускается применение импортных реактивов и посуды.

2.6.3. Алгоритм операций по подготовке растворов к анализу

Раствор ванадиевомолибденовогокислого аммония готовят следующим образом: 10 г молибденовокислого аммония растворяют в 100 см3 горячей воды, затем приливают 2 см3 азотной кислоты и фильтруют в случае образования осадка.

Отдельно растворяют 0,3 г ванадиевокислого аммония в 50 см3 воды при 50 - 60 °С, охлаждают и приливают 50 см3 раствора с объемной долей азотной кислоты 0,33. Приготовленный раствор молибденовокислого аммония вливают при перемешивании в раствор ванадиевокислого аммония, затем приливают 16 см3 азотной кислоты и перемешивают. Раствор хранят в закрытой склянке в темном месте.

Стандартный раствор фосфора готовят следующим образом: 0,1917 г дважды перекристаллизованного однозамещенного фосфорнокислого калия растворяют в небольшом количестве воды в мерной колбе вместимостью 1 дм3, доливают водой до метки и перемешивают. 1 см3 стандартного раствора соответствует 0,1 мг пятиокиси фосфора.

Раствор контрольного опыта готовят следующим образом: в мерную колбу емкостью 100 см3 помещают 15 см3 нагретой до 60 - 80 °С азотной кислоты, затем приливают 10 см3 раствора ванадиевомолибденовокислого аммония, доливают до метки водой и перемешивают.

2.6.4. Алгоритм выполнения измерений

Навеску воздушно-сухой пробы 1,0 г смачивают водой и помещают в стакан емкостью 100 см3, приливают 5 см3 царской водки и выпаривают досуха. Остаток смачивают 3 см3 соляной кислоты и выпаривают досуха. Приливают 5 см3 азотной кислоты и выпаривают до консистенции сиропа, при которой жидкость бывает подернута пленкой. Объем раствора должен быть не более 1 - 1,5 см3. Если в конце выпаривания продолжают выделяться бурые окислы азота, что указывает на присутствие органических соединений, то повторно приливают 5 см3 азотной кислоты и снова выпаривают до консистенции сиропа.

К выпаренному раствору приливают 15 см3 нагретого до 60 - 80 °С раствора с объемной долей азотной кислоты 0,33, нагревают в течение нескольких минут, фильтруют через фильтр «белая лента» или фильтр средней плотности в мерную колбу емкостью 100 см3. Осадок на фильтре промывают 2 - 3 раза холодной водой. К реактиву в колбе приливают 10 см3 раствора ванадиевомолибденовокислого аммония, доводят до метки водой и перемешивают.

Оптическую плотность раствора замеряют на фотохроматографе при 413 нм, применяя светофильтр № 3 с областью пропускания 400 - 500 нм и кювету с толщиной колориметрируемого слоя 50 нм относительно раствора, не содержащего стандартного раствора фосфора.

Для построения градуировочного графика в ряд мерных колб вместимостью 100 см3 отбирают 0, 1, 2, 3, 4 и 5 см3 стандартного раствора фосфора, что соответствует 0; 0,1; 0,2; 0,3; 0,4 и 0,5 мг окиси фосфора. В каждую колбу приливают по 5 см3 азотной кислоты и по 8 см3 ванадиевомолибденовокислого аммония, доливают водой до метки и перемешивают. Через 3 - 4 мин. измеряют оптическую плотность раствора.

В качестве раствора сравнения применяют раствор контрольного опыта, приготовленный одновременно с анализируемым раствором.

По величине оптической плотности анализируемого раствора устанавливают массовую долю пятиокиси фосфора по градуировочному графику.

2.6.5. Обработка результатов

Массовую долю фосфора в пересчете на пятиокись (Х) в процентах вычисляют по формуле

где М1 - масса пятиокиси фосфора, найденная по градуировочному графику, мг;

М - масса пробы, г;

У1 - объем аликвотной части анализируемого раствора, см3;

У - объем всего анализируемого раствора, см3.

Массовую долю фосфора (Х1) определяют по формуле

где 2,29 - коэффициент пересчета пятиокиси фосфора на фосфор.

2.7. Допускается проведение химического анализа известняков флюсовых по другим методам и методикам, аттестованным ИСО ЦНИИЧМ, гарантирующим не меньшую точность, чем настоящий РД.

При разногласии в оценке качества флюсового известняка анализ проводят по РД 14-16-3-90 .

2.8. Определение соответствия известняка марки КДУ-1 техническим требованиям НТД к стабильности содержания окиси магния (MgO).

2.8.1. Данное определение производят статистическим методом по каждой партии известняка на основе результатов химического анализа.

2.8.2. Основными статистическими характеристиками массовой доли окиси магния в партии известняка являются:

xi - массовая доля окиси магния в i -ой пробе, отобранной из партии известняка (i = 1, 2, ..., n ), %;

Средняя арифметическая массовая доля окиси магния в партии известняка, %

σ - среднее квадратическое отклонение проб от среднего значения в партии известняка, %

2.8.3. Партия известняка соответствует техническим требованиям НТД к массовой доли окиси магния в том случае, когда все пробы (X1, X2, ..., Хn) укладываются в нормативный интервал 7 - 12 %, а фактическое среднее квадратическое отклонение (σф) не превышает максимально допустимое среднее квадратическое отклонение (σм), приведенное в табл. .

2.8.4. Если фактическое среднее квадратическое отклонение (σф) более максимально допустимого отклонения (σм), то известняк данной партии является неусредненным доломитизированным известняком.

2.8.5. Снижение диапазона колебания массовой доли окиси магния в партии известняка определяется в случае, когда фактическое среднее квадратическое отклонение (σф) менее нормативного среднего квадратического отклонения, равного ± 0,5 % (σм = 0,5 %).

Принимая, что результаты гарантируются с вероятностью 0,95, снижение диапазона колебания массовой доли окиси магния в партии известняка (D) против расчетной нормы (± 1,0 %) равно

Таблица 2

Количество проб, отобранных их партии известняка (n)

Максимально допустимое отклонение (σм), %

Горный филиал Всесоюзного института огнеупоров (ГФ ВИО)

Директор

Ю.И. Бережной

Заведующий лабораторией

И.В. Андрющенко

Руководитель темы, научный сотрудник

Т.А. Бут

Донниичермет

Заведующий лабораторией

А.И. Рябенко

Согласовано

Концерн «Металлургпром» Министерства металлургии СССР

Заместитель председателя

В.Т. Полуектов

Письмо от 12.03.90 № 01-4-90

Концерн «Рудпром» Министерства металлургии СССР

Заместитель главного инженера

В.Г. Евсин

Письмо от 12.03.90 № 06-3/31

Отдел ферропластовой промышленности Министерства металлургии СССР

Заместитель начальника

В.А. Матвиенко

Письмо от 12.03.90 № 04-65/7

Горный отдел Министерства металлургии СССР

Заместитель начальника

В.И. Колесников

Письмо от 12.03.90 № 41-31-06

ПЕРЕЧЕНЬ
документов, на которые имеются ссылки в тексте РД 14-16-3-90

Руды железные, концентраты, англомераты и окатыши. Методы определения серы

ТУ 6-09-3870-84

Хромовый темно-синий индикатор (кислотный хром темно-синий), индикатор; 2-(5-хлор-2-оксифенил)-АЭО-1,8-диоксинафталин-3,6-дисульфокислоты динатриевая соль) чистый для анализа

ТУ 6-09-2448-86

НИТИЛотриэтанол

ТУ 6-09-2540-87

Стандарт-титры (фиксаналы, нормадозы)

ТУ 6-09-5171-84

Метиловый оранжевый индикатор (парадиметиламиноазобензолсульфокислый натрий) чистый для анализа

Состав известняка

Химический состав чистых известняков близок к кальциту, где CaO 56% и CO 2 44%. Известняк в ряде случаев включает примеси глинистых минералов , доломита , кварца , реже гипса , пирита и органических остатков, которые определяют название известняков. Доломитизированный известняк содержит от 4 до 17% MgO, мергелистый известняк — от 6 до 21% SiO 2 +R 2 О 3 . Известняк песчанистый и окремнелый имеет примеси кварца, опала и халцедона . Принято отражать в названии известняков также преобладающее присутствие органогенных остатков (мшанковый, водорослевый), либо его структуру (кристаллический, сгустковый, детритусовый), или форму породообразующих частиц (оолитовый, брекчиевидный).

Описание и виды

По структуре выделяют известняки кристаллический, органогенно-обломочный, обломочно-кристаллический (смешанной структуры) и натёчный (травертин). Среди кристаллических известняков по величине зёрен различают крупно-, мелко- и скрытокристаллический (афанитовый), по блеску на изломе — перекристаллизованный (мраморовидный) и кавернозный (травертиновый). Кристаллический известняк — массивный и плотный , слабопористый; травертиновый — кавернозный и сильнопористый. Среди органогенно-обломочного известняка в зависимости от состава и величины частиц различают: рифовый известняк; ракушечный известняк (), состоящий преимущественно из целых или дроблёных раковин, скреплённых карбонатным, глинистым или другим природным цементом; детритусовый известняк, сложенный обломками раковин и другими органогенными обломками, сцементированными кальцитовым цементом; водорослевый известняк. К органогенно-обломочным известнякам относится и белый (т.н. пишущий) . Органогенно-обломочные известняки характеризуются крупной , малой объёмной массой и легко обрабатываются (распиливаются и шлифуются). Обломочно-кристаллический известняк состоит из карбонатного разной формы и величины (комочки, сгустки и желваки тонкозернистого кальцита), с включением отдельных зёрен и обломков различных пород и минералов , линз кремней . Иногда известняк сложен оолитовыми зёрнами, ядра которых представлены обломками кварца и кремня. Характеризуются мелкими, разными по форме порами, переменной объёмной массой, малой прочностью и большим водопоглощением . Натёчный известняк (травертин, известковый туф) состоит из натёчного кальцита. Характеризуется ячеистостью, малой объёмной массой, легко обрабатывается и распиливается.

По макротекстуре и условиям залегания среди известняков различают массивные, горизонтально- и наклоннослоистые, толсто- и тонкоплитчатые, кавернозные, трещиноватые , пятнистые, комковатые, рифовые, фунтиковые, стилолитовые, подводно-оползневые и др. По происхождению выделяют органогенные (биогенные), хемогенные, обломочные и смешанные известняки. Органогенные (биогенные) известняки представляют собой скопления карбонатных остатков или целых скелетных форм морских, реже пресноводных организмов, с небольшой примесью преимущественно карбонатного цемента. Хемогенные известняки возникают в результате осаждения извести с последующей перекристаллизацией карбонатной массы осадков, преимущественно из морской воды (кристаллический известняк) или от натёков из минерализованных (травертин). Обломочные известняки образуются в результате раздробления, смыва и переотложения угловато-окатанных обломков карбонатных и других пород и скелетных остатков, преимущественно в морских бассейнах и на побережьях. Известняки смешанного происхождения представляют собой комплекс отложений, возникших в результате последовательного или параллельного наложения различных процессов образования карбонатных осадков.

Цвет известняков преимущественно белый, светло-серый, желтоватый; присутствие органических, железистых, марганцовистых и других примесей обусловливает тёмно-серую, чёрную, бурую, красноватую и зеленоватую окраску.

Известняк — одна из самых широко распространённых осадочных горных пород; она слагает различные формы рельефа Земли . Залежи известняков встречаются среди отложений всех геологических систем — от докембрийских до четвертичной; наиболее интенсивное образование известняков происходило в силуре, карбоне, юре и верхнему мелу; составляют 19-22% от всей массы осадочных пород. Мощность толщ известняков чрезвычайно изменчива: от первых сантиметров (в отдельных прослоях отложений) до 5000 м.

Свойства известняка

Физико-механические свойства известняков чрезвычайно неоднородны, но имеют прямую зависимость от их структуры и текстуры. Плотность известняков 2700-2900 кг/м 3 , колеблется в зависимости от содержания примесей доломита, кварца и других минералов. Объёмная масса известняков изменяется от 800 кг/м 3 (у ракушечников и травертина) до 2800 кг/м 3 (у кристаллических известняков). Предел прочности при сжатии известняков колеблется от 0,4 МПа (для ракушечника) до 300 МПа (для кристаллического и афанитового известняка). Во влажном состоянии прочность известняков часто снижается. Для большей части месторождений характерно наличие известняков, не однородных по прочности. Потери на износ, истирание и дробимость увеличиваются, как правило, с уменьшением объёмной массы известняков. Морозостойкость для кристаллических известняков достигает 300-400 циклов, но резко изменяется у известняков иной структуры и зависит от формы и связи пор и трещин в нём. Обрабатываемость известняков имеет прямую связь с их структурой и текстурой. Ракушечник и пористые известняки легко распиливаются и обтёсываются; кристаллические известняки хорошо полируются.

Применение известняка

Известняк имеет универсальное применение в промышленности, сельском хозяйстве и строительстве. В металлургии известняк служит флюсом. В производстве извести и цемента известняк — главный компонент. Известняк используется в химической и пищевой промышленности: как вспомогательный материал в производстве соды, карбида кальция , минеральных удобрений, стекла, сахара, бумаги. Применяется при очистке нефтепродуктов, сухой перегонке угля, в изготовлении красок, замазок, резины, пластмасс, мыла, лекарств, минеральной ваты, для очистки тканей и обработки кожи, известкования почв.

Известняк — важнейший строительный материал , из него изготовляются облицовочные

Выбор редакции
В последнее время авторы все чаще выступают против использования диода в цепи питания ламп накаливания. Аргументы разные − от экономии...

На основе мощных переключательных полевых транзисторов можно построить линейные стабилизаторы напряжения. Подобное устройство было ранее...

Если вдруг нужно синхронизировать телефон с компьютером то нужен кабель, но какой кабель нужен в таком случае? Если есть выход с телефона...

Обновление NEXT привнесло в No Man’s Sky довольно много значительных изменений, в том числе и большое количество новых элементов,...
Ферриты – это ферримагнитная керамика, сочетающая в себе высокие магнитные свойства и высокое удельное электрическое сопротивление и,...
Не все любят возиться с комнатными растениями. Не у всех есть к этому талант, и цветы гибнут, не успев обжиться. Однако без зелени...
Огурцы – одни из самых популярных овощей, которые употребляются в пищу на протяжении всего года, поэтому их , так и в открытом грунте...
У каждого хозяина частного дома есть приусадебный участок, который подходит для выращивания овощных культур. Некоторые из них не любят...
Дерево - это один из самых распространённых строительных материалов. Из него возводят дома, строят , используют для изготовления . Тем...