Как сделать расчет вентиляции: формулы и пример расчёта приточно-вытяжной системы. Технико-экономическая оптимизация утилизации теплоты вытяжного воздуха в системах вентиляции и кондиционирования Приточно-вытяжная вентиляция с рекуперацией


Часть 1. Теплоутилизирующие устройства

Использование тепла отходящих дымовых газов
технологических печей.

Технологические печи являются крупнейшими потребителями энергии на нефтеперерабатывающих и нефтехимических предприятиях, в металлургии, а также во многих других отраслях промышленности. На НПЗ в них сжигается 3 – 4 % от всей перерабатываемой нефти.

Средняя температура дымовых газов на выходе из печи, как правило, превышает 400 °С. Количество теплоты, уносимой с дымовыми газами, составляет 25 –30 % от всей теплоты, выделяющейся при сгорании топлива. Поэтому утилизация тепла уходящих дымовых газов технологических печей приобретает исключительно большое значение.

При температуре дымовых газов выше 500 °С следует применять котлы-утилизаторы – КУ.

При температуре дымовых газов менее 500 °С рекомендуется применять воздухоподогреватели – ВП.

Наибольший экономический эффект достигается при наличии двухагрегатной установки, состоящей из КУ и ВП (в КУ газы охлаждаются до 400 °С и поступают в воздухоподогреватель на дальнейшее охлаждение) – чаще применяется на нефтехимических предприятиях при высокой температуре дымовых газов.

Котлы-утилизаторы.

В КУ теплота дымовых газов используется для получения водяного пара. КПД печи повышается на 10 – 15.

Котлы-утилизаторы могут выполняться встроенными в конвекционную камеру печи, или выносными.

Выносные котлы утилизаторы делятся на два типа:

1) котлы газотрубного типа;

2) котлы пакетно-конвективного типа.

Выбор требуемого типа осуществляется в зависимости от требуемого давления получаемого пара. Первые используют при выработке пара относительно низкого давления – 14 – 16 атм., вторые – для выработки пара давлением до 40 атм. (однако они рассчитаны на начальную температуру дымовых газов около 850 °С).

Давление вырабатываемого пара необходимо выбирать с учетом того, потребляется ли весь пар на самой установке или же имеется избыток, который необходимо выводить в общезаводскую сеть. В последнем случае давление пара в барабане котла необходимо принимать в соответствии с давлением пара в общезаводской сети с тем, чтобы выводить избыток пара в сеть и избегать неэкономичного дросселирования при выводе его в сеть низкого давления.

Котлы-утилизаторы газотрубного типа конструктивно напоминают теплообменники «труба в трубе». Дымовые газы пропускаются через внутреннюю трубу, а водяной пар вырабатывается в межтрубном пространстве. Несколько таких устройств располагается параллельно.


Котлы-утилизаторы пакетно-конвективного типа имеют более сложную конструкцию. Принципиальная схема работы КУ этого типа приведена на рис. 5.4.

Здесь используется естественная циркуляция воды и представлена наиболее полная конфигурация КУ с экономайзером и пароперегревателем.

Принципиальная схема работы котла-утилизатора

пакетно-конвективного типа

Химочищенная вода (ХОВ) поступает в колонну-деаэратор для удаления растворенных в ней газов (главным образом кислорода и диоксида углерода). Вода стекает по тарелкам вниз, а навстречу ей противотоком пропускается небольшое количество водяного пара. Вода нагревается паром до 97 – 99 °С и за счет снижения растворимости газов с повышением температуры основная их часть выделяется и отводится сверху деаэратора в атмосферу. Пар, отдавая свое тепло воде, конденсируется. Деаэрированная вода снизу колонны забирается насосом и им нагнетается необходимое давление. Вода пропускается через змеевик экономайзера, в котором подогревается почти до температуры кипения воды при заданном давлении, и поступает в барабан (паросепаратор). Вода в паросепараторе имеет температуру, равную температуре кипения воды при заданном давлении. Через змеевики выработки пара вода циркулирует за счет разности плотностей (естественная циркуляция). В этих змеевиках часть воды испаряется, и парожидкостная смесь возвращается в барабан. Насыщенный водяной пар отделяется от жидкой фазы и отводится сверху барабана в змеевик пароперегревателя. В пароперегревателе насыщенный пар перегревается до нужной температуры и отводится потребителю. Часть полученного пара используется для деаэрации питательной воды.

Надежность и экономичность работы КУ в значительной степени зависит от правильной организации водного режима. При неправильной эксплуатации интенсивно образуется накипь, протекает коррозия поверхностей нагрева, происходит загрязнение пара.

Накипь – это плотные отложения, образующиеся при нагреве и испарении воды. Вода содержит гидрокарбонаты, сульфаты и другие соли кальция и магния (соли жесткости), которые при нагревании преобразуются в бикарбонаты и выпадают в осадок. Накипь, имеющая на несколько порядков меньшую, чем металл, теплопроводность, приводит к снижению коэффициента теплопередачи. За счет этого снижается мощность теплового потока через поверхность теплообмена и, естественно, снижается эффективность работы КУ (уменьшается количество вырабатываемого пара). Температура отводимых из КУ дымовых газов возрастает. Кроме того, происходит перегрев змеевиков и их повреждение вследствие снижения несущей способности стали.

Для предупреждения образования накипи в качестве питательной воды используют предварительно химочищенную воду (можно брать на ТЭС). Помимо этого производится непрерывная и периодическая продувка системы (удаление части воды). Продувка предупреждает рост концентрации солей в системе (вода постоянно испаряется, а содержащиеся в ней соли – нет, поэтому концентрация солей растет). Непрерывная продувка котла составляет обычно 3 – 5 % и зависит от качества питательной воды (не должна превышать 10 %, так как с продувкой связана потеря тепла). При эксплуатации КУ высокого давления, работающих с принудительной циркуляцией воды, дополнительно применяют внутрикотловое фосфатирование. При этом катионы кальция и магния, входящие в состав образующих накипь сульфатов, связываются с фосфатными анионами, образуя соединения малорастворимые в воде и выпадающие в толще водяного объема котла, в виде легко удаляемого при продувке шлама.

Растворенные в питательной воде кислород и углекислый газ вызывают коррозию внутренних стенок котла, причем скорость коррозии возрастает с повышением давления и температуры. Для удаления газов из воды применяют термическую деаэрацию. Также мерой защиты против коррозии является поддержание такой скорости в трубах, при которой пузырьки воздуха не могут удерживаться на их поверхности (выше 0,3 м/с) .

В связи с повышением гидравлического сопротивления газового тракта и снижением силы естественной тяги возникает необходимость установки дымососа (искусственная тяга). При этом температура дымовых газов не должна превышать 250 °С во избежание разрушения этого аппарата. Но чем ниже температура отводимых дымовых газов, тем более мощный необходимо иметь дымосос (растет потребление электроэнергии).

Срок окупаемости КУ обычно не превышает одного года.

Воздухоподогреватели. Используются для подогрева воздуха, подаваемого в печь на сжигание топлива. Подогрев воздуха позволяет снизить расход топлива в печь (КПД повышается на 10 – 15 %).

Температура воздуха после воздухоподогревателя может достигать 300 – 350 °С. Это способствует улучшению процесса горения, повышению полноты сгорания топлива, что является очень важным преимуществом при использовании высоковязких жидких топлив.

Также преимуществами воздухоподогревателей по сравнению с КУ является простота их конструкции, безопасность эксплуатации, отсутствие необходимости устанавливать дополнительное оборудование (деаэраторы, насосы, теплообменники и т. д.). Однако воздухоподогреватели при действующем соотношении цен на топливо и на водяной пар оказываются менее экономичными, чем КУ (цена на пар у нас очень высокая – в 6 раз выше за 1 ГДж). Поэтому выбирать способ утилизации тепла дымовых газов нужно, исходя из конкретной ситуации на данной установке, предприятии и т. д.

Применяются воздухоподогреватели двух типов: 1) рекуперативные (передача тепла через стенку); 2) регенеративные (аккумулирование тепла).

Часть 2. Утилизация тепла вентиляционных выбросов

На отопление и вентиляцию производственных и коммунально-бытовых зданий и сооружений расходуется большое количество теплоты. Для отдельных отраслей промышленности (в основном легкая промышленность) эти расходы достигают 70 – 80 % и более от общей потребности в тепловой энергии. На большинстве предприятий и организаций теплота удаляемого воздуха от систем вентиляции и кондиционирования не используется.

Вообще, вентиляция используется очень широко. Системы вентиляции сооружаются в квартирах, общественных заведениях (школах, больницах, спортклубах, бассейнах, ресторанах), производственных помещениях и т. д. Для различных целей могут применяться различные типы вентиляционных систем. Обычно, если объем воздуха, который должен заменяться в помещении в единицу времени (м 3 /ч), невелик, то применяется естественная вентиляция . Такие системы реализованы в каждой квартире и большинстве общественных учреждений и организаций. При этом используется явление конвекции – нагретый воздух (имеет пониженную плотность) уходит через вентиляционные отверстия и отводится в атмосферу, а на его место, через неплотности в окнах, дверях и т. д., подсасывается свежий холодный (более высокой плотности) воздух с улицы. При этом неизбежны потери тепла, так как на подогрев поступающего в помещение холодного воздуха необходим дополнительный расход теплоносителя. Поэтому применение даже самых современных теплоизоляционных конструкций и материалов при строительстве не может полностью устранить тепловые потери. В наших квартирах 25 – 30 % тепловых потерь связано именно с работой вентиляции, во всех остальных случаях эта величина гораздо выше.

Системы принудительной (искусственной) вентиляции применяются при необходимости интенсивного обмена больших объемов воздуха, что обычно связано с предупреждением роста концентрации опасных веществ (вредных, токсичных, пожаровзрывоопасных, имеющих неприятный запах) в помещении. Принудительная вентиляция реализуется в производственных помещениях, на складах, в хранилищах с/х продуктов и т. д.

Используются системы принудительной вентиляции трех типов :

Приточная система состоит из воздуходувки, нагнетающей свежий воздух в помещение, приточного воздуховода и системы равномерного распределения воздуха в объеме помещения. Избыточный объем воздуха при этом вытесняется через неплотности в окнах, дверях и т. д.

Вытяжная система состоит из воздуходувки, откачивающей воздух из помещения в атмосферу, вытяжного воздуховода и системы для равномерного отвода воздуха из объема помещения. Свежий воздух в этом случае подсасывается в помещение сквозь различные неплотности или специальные системы подвода.

Комбинированные системы представляют собой совмещенные приточно-вытяжные системы вентиляции. Используются, как правило, при необходимости очень интенсивного обмена воздуха в крупных помещениях; при этом потребление тепла на подогрев свежего воздуха максимально.

Применение систем естественной вентиляции и отдельных систем вытяжной и приточной вентиляции не позволяет использовать тепло отводимого воздуха для подогрева свежего воздуха, поступающего в помещение. При эксплуатации же комбинированных систем существует возможность утилизации тепла вентиляционных выбросов для частичного подогрева приточного воздуха и снижения потребления тепловой энергии. В зависимости от разности температур воздуха в помещении и на улице расход тепла на подогрев свежего воздуха может быть снижен на 40 – 60 %. Подогрев может осуществляться в регенеративных и рекуперативных теплообменниках. Первые предпочтительнее, так как имеют меньшие габариты, металлоемкость и гидравлическое сопротивление, обладают большей эффективностью и продолжительным сроком службы (20 – 25 лет).

Воздуховоды подводятся к теплообменным аппаратам, и тепло передается напрямую от воздуха к воздуху через разделяющую стенку или аккумулирующую насадку. Но в некоторых случаях существует необходимость в разносе приточного и вытяжного воздуховодов на значительное расстояние. В таком случае может быть реализована схема теплообмена с промежуточным циркулирующим теплоносителем. Пример работы такой системы при температуре в помещении 25 °С и температуре окружающей среды – 20 °С показан на рис. 5.5.

Схема теплообмена с промежуточным циркулирующим теплоносителем:

1 – вытяжной воздуховод; 2 – приточный воздуховод; 3,4 – оребренные
трубчатые змеевики; 5 – трубопроводы циркуляции промежуточного теплоносителя
(в качестве промежуточного теплоносителя в таких системах обычно используются концентрированные водные растворы солей – рассолы); 6 – насос; 7 – змеевик для
дополнительного подогрева свежего воздуха водяным паром или горячей водой

Система работает следующим образом. Теплый воздух (+ 25 °С) из помещения выводится по вытяжному воздуховоду 1 через камеру, в которой установлен оребренный змеевик 3 . Воздух омывает наружную поверхность змеевика и передает тепло холодному промежуточному теплоносителю (рассолу), протекающему внутри змеевика. Воздух охлаждается до 0 °С и выбрасывается в атмосферу, а подогретый до 15 °С рассол по трубопроводам циркуляции 5 поступает в камеру подогрева свежего воздуха на приточном воздуховоде 2 . Здесь промежуточный теплоноситель отдает тепло свежему воздуху, подогревая его от – 20 °С до + 5 °С. Сам промежуточный теплоноситель при этом охлаждается от + 15 °С до – 10 °С. Охлажденный рассол поступает на прием насоса и снова возвращается в систему на рециркуляцию.

Свежий приточный воздух, подогретый до + 5 °С, может сразу вводиться в помещение и подогреваться до требуемой температуры (+ 25 °С) с помощью обычных радиаторов отопления, а может подогреваться непосредственно в вентиляционной системе. Для этого на приточном воздуховоде устанавливается дополнительная секция, в которой размещается оребренный змеевик. Внутри трубок протекает горячий теплоноситель (теплофикационная вода или водяной пар), а воздух омывает наружную поверхность змеевика и нагревается до + 25 °С, после этого теплый свежий воздух распределяется в объеме помещения.

Применение такого способа обладает рядом преимуществ. Во-первых, вследствие высокой скорости воздуха в секции подогрева, значительно (в несколько раз) повышается коэффициент теплопередачи по сравнению с обычными радиаторами отопления. Это приводит к существенному снижению общей металлоемкости системы отопления – снижению капитальных затрат. Во-вторых, помещение не загромождается радиаторами отопления. В-третьих, достигается равномерное распределение температур воздуха в объеме помещения. А при использовании радиаторов отопления в крупных помещениях сложно обеспечить равномерный прогрев воздуха. В локальных областях воздух может иметь температуру существенно выше или ниже нормы.

Единственный недостаток – несколько повышается гидравлическое сопротивление воздушного тракта и расход электроэнергии на привод приточной воздуходувки. Но преимущества настолько значительны и очевидны, что предварительный подогрев воздуха непосредственно в вентиляционной системе можно рекомендовать в подавляющем большинстве случаев.

Для того, чтобы обеспечить возможность утилизации тепла в случае использования систем приточной или вытяжной систем вентиляции в отдельности, необходимо организовать централизованный соответственно отвод или подвод воздуха через специально смонтированные воздуховоды. При этом необходимо устранить все щели и неплотности, чтобы исключить неуправляемый выдув, или подсос воздуха.

Системы теплообмена между удаляемым из помещения воздухом и свежим можно использовать не только для подогрева приточного воздуха в холодное время года, но и для охлаждения его летом, если помещение (офис) оборудовано кондиционерами. Охлаждение до температур ниже температуры окружающей среды всегда связано с высокими затратами энергии (электроэнергии). Поэтому снизить расход электроэнергии на поддержание комфортной температуры в помещении в жаркое время года можно предварительным охлаждением свежего воздуха, отводимым холодным воздухом.

Тепловые ВЭР.

К тепловым ВЭР относится физическая теплота отходящих газов котельных установок и промышленных печей, основной или промежуточной продукции, других отходов основного производства, а также теплота рабочих тел, пара и горячей воды, отработавших в технологических и энергетических агрегатах. Для утилизации тепловых ВЭР используют теплообменники, котлы-утилизаторы или тепловые агенты. Рекуперация теплоты отработанных технологических потоков в теплообменниках может проходить через разделяющую их поверхность или при непосредственном контакте. Тепловые ВЭР могут поступать в виде концентрированных потоков теплоты или в виде теплоты, рассеиваемой в окружающую среду. В промышленности концентрированные потоки составляют 41 %, а рассеиваемая теплота – 59 %. Концентрированные потоки включают теплоту уходящих дымовых газов печей и котлов, сточных вод технологических установок и жилищно-коммунального сектора. Тепловые ВЭР делятся на высокотемпературные (с температурой носителя выше 500 °С), среднетемпературные (при температурах от 150 до 500 °С) и низкотемпературные (при температурах ниже 150 °С). При использовании установок, систем, аппаратов небольшой мощности потоки теплоты, отводимые от них, составляют небольшую величину и рассредоточены в пространстве, что затрудняет их утилизацию из-за низкой рентабельности.

В Северной Европе и Скандинавии получили распространение системы вентиляции многоэтажных жилых зданий с подогревом приточного воздуха за счет теплоты удаляемого с помощью теплоутилизаторов. Теплоутилизаторы в системах вентиляции получили развитие в 1970-е годы в период энергетического кризиса.

К настоящему времени массовое применение нашли теплоутилизаторы: – рекуперативного типа на базе пластинчатых воздухо-воздушных теплообменников (рис. 41); – регенеративные с вращающейся теплообменной насадкой (рис. 42); – с промежуточным теплоносителем с теплообменниками «жидкость-воздух» (рис. 43).

По своему исполнению в многоэтажных жилых зданиях теплоутилизаторы могут быть центральными на все здания или группу квартир и индивидуальными, поквартирными.

Рис. 42. Теплоутилизатор с вращающейся теплообменной насадкой

Рис. 41. Теплоутилизатор рекуперативного типаутилизатор теплоты вентиляционного воздуха)

При сходных массогабаритных показателях наибольшей энергетической эффективностью обладают регенеративные теплоутилизаторы (80-95%), далее следуют рекуперативные (до 65%) и на последнем месте находятся теплоутилизаторы с промежуточным теплоносителем (45-55%).

По своим конструктивным особенностям теплоутилизаторы с промежуточным теплоносителем мало пригодны для индивидуальной поквартирной вентиляции, и поэтому на практике их используют для центральных систем.

Рис. 43. Утилизатор теплоты вентиляционного воздуха с промежуточным теплоносителем: 1 – приточная вентустановка; 2 – вытяжная вентустановка; 3 – теплообменник; 4 – циркуляционный насос; 5 – фильтр; 6 – корпус утилизатора

Регенеративные теплоутилизаторы обладают существенным недостатком - вероятностью смешивания определенной части удаляемого воздуха с приточным в корпусе аппарата, что, в свою очередь, может привести к переносу неприятных запахов и болезнетворных бактерий. Объем перетекающего воздуха в современных аппаратах сокращен до долей процента, но, тем не менее, большинство специалистов рекомендуют ограничить их область применения пределами одной квартиры, коттеджа или одного помещения в общественных зданиях.

Рекуперативные теплоутилизаторы, как правило, включают в свой состав два вентилятора (приточный и вытяжной), пластинчатый теплообменник, фильтры (рис. 41). В современных конструкциях в теплоутилизатор встраиваются два водяных или электрических подогревателя. Один служит для защиты от замораживания вытяжного тракта теплообменника, второй - для догрева температуры приточного воздуха до заданного значения.

Эти системы, по сравнению с традиционными, обладают рядом достоинств, к числу которых следует отнести существенную экономию тепловой энергии, расходуемой на подогрев вентиляционного воздуха, - от 50 до 90% в зависимости от типа применяемого утилизатора; а также высокий уровень воздушно-тепловой комфортности, обусловленный аэродинамической устойчивостью вентиляционной системы и сбалансированностью расходов приточного и удаляемого воздуха.

При установке рекуперативных теплоутилизаторов поквартирно появляются: – возможность гибко регулировать воздушно-тепловой режим в зависимости от режима эксплуатации квартиры, в том числе с использованием рециркуляционного воздуха; – возможность защиты от городского, внешнего шума (при использовании герметичных светопрозрачных ограждений); – возможность очистки приточного воздуха с помощью высокоэффективных фильтров.

Реализация указанных достоинств связана с решением ряда проблем: – необходимо предусмотреть соответствующие объемно-планировочные решения квартиры и выделить место для размещения теплоутилизаторов и дог полнительных воздуховодов; – следует предусмотреть защиту от замораживания теплоутилизаторов при низких температурах наружного воздуха (-10 °С и ниже); – утилизаторы должны быть в малошумном исполнении и при необходимости оборудованы дополнительными шумоглушителями; – необходимо обеспечить квалифицированное техническое обслуживание теплоутилизаторов (замена или чистка фильтров, промывка теплообменника).

Различные модификации утилизаторов теплоты удаляемого воздуха производят в общей сложности более 20 фирм. Кроме того, производство энергосберегающего оборудования начинается и на отечественных предприятиях.

Уровень звуковой мощности приведен без сети воздуховодов, без глушителей для открыто расположенного утилизатора.

Широкое применение в жилых многоэтажных зданиях систем механической вентиляции с утилизацией теплоты вытяжного воздуха сдерживается рядом факторов: – практически отсутствует материальное стимулирование энергосбережения у потребителей - владельцев квартир; – инвесторы-застройщики не заинтересованы в дополнительных затратах на инженерное оборудование в домах эконом- и бизнес-класса, полагая, что качество вентиляции - второстепенный показатель в формировании рыночной стоимости жилья; – «отпугивает» необходимость технического обслуживания механической вентиляции; – население недостаточно информировано о критериях воздушно-теплового комфорта жилища, его влиянии на здоровье и работоспособность.

Вместе с тем наметилась положительная тенденция преодоления отмеченных проблем, и у инвесторов, и у покупателей квартир появляется практический интерес в современных технических решениях систем вентиляции.

Сравним эффективность традиционной вентиляции и новых технических решений применительно к жилым многоэтажным зданиям массовой застройки.

Предлагается три варианта организации вентиляции в жилых 17-этажных зданиях серии П-44 для условий Москвы:
A. Вентиляция по типовому проекту (естественная канальная вытяжка из помещений кухни, ванны и туалета и приток за счет инфильтрации и от
крывания фрамуг окон).
Б. Механическая вытяжная, центральная система вентиляции с установкой в квартирах приточных и вытяжных клапанов постоянного расхода воздуха.
B. Механическая приточно-вытяжная система вентиляции с утилизацией теплоты удаляемого воздуха в рекуперативных теплообменниках.

Сравнение проводилось по трем критериям: – качество воздуха; – расход тепловой энергии в системах вентиляции; – акустический режим.

Для условий Москвы по данным метеонаблюдений были приняты следующие климатические условия.

В расчетах приняты следующие значения сопротивления теплопередаче: – стен - 3,2 м2 °С/Вт; – окон – 0,62 м2 °С/Вт; – покрытий - 4,04 м2 °С/Вт.

Система отопления с традиционными конвекторами на параметры теплоносителя 95/70 °С.

В каждом подъезде на этаже расположено две 2-комнатных, одна 1-комнатная и одна 3-комнатная квартиры. В каждой квартире предусмотрена кухня с электроплитой, ванная комната и туалет.

Вытяжка производится в соответствии с нормативами: – из кухни - 60 м3/ч; – из ванной комнаты - 25 м3/ч; – из туалета - 25 м3/ч.

Для анализа принято, что в варианте А за счет проветривания путем открывания фрамуг окон среднесуточный объем притока соответствует объему вытяжки из квартиры.

Рис. 44. Рекуператор с установкой догревателей воздуха в квартирах экспериментального дома: 1 – вентилятор удаляемого воздуха; 2 – вентилятор приточного воздуха; 3 – пластинчатый теплообменник; 4 – электрический нагреватель; 5 – подогреватель теплообменника; 6 – фильтр для наружного воздуха (класс EU5); 7 – фильтр для удаляемого воздуха (класс EU5); 8 – датчик против замерзания теплообменника; 9, 10 – автоматический сброс термозащиты; 11, 12 – ручной сброс термозащиты; 13 – датчик температуры приточного воздуха

В варианте Б постоянный воздухообмен обеспечивается за счет работы центрального вытяжного вентилятора, сетью воздуховодов связанного с каждой из квартир. Постоянство воздухообмена обеспечивается применением приточных клапанов постоянного расхода, установленных в створках окон, и саморегулирующихся вытяжных клапанов на кухне, в ванной комнате и туалете.

В варианте В используется механическая приточно-вытяжная система вентиляции с утилизацией теплоты удаляемого воздуха для подогрева приточного в пластинчатом теплообменнике. При сравнении также принято условие постоянства воздухообмена.

По критерию качества воздуха вариант А существенно уступает вариантам Б и В. Проветривание осуществляется периодически в течение произвольно выбранного жителями времени, т. е. субъективно и потому далеко не всегда эффективно. В зимний период проветривание связано с необходимостью покидать жителями проветриваемое помещение. Попытки отрегулировать открытие фрамуг для постоянной вентиляции чаще всего приводят к нестабильности работы вентиляции, возникновению сквозняков, температурному дискомфорту. При периодическом проветривании качество воздуха после закрытия форточек ухудшается, и большую часть времени жители проводят в загрязненной воздушной среде (рис. 45).

Рис. 45. Изменение воздухообмена и концентрации вредных веществ при периодическом проветривании помещений:
1 - воздухообмен;
2 - концентрация вредных веществ;
3 - нормативный уровень концентрации вредных веществ

Особый режим вентиляции предусматривается для помещения кухни. При приготовлении пищи в работу включается надплитньгй зонт, оборудованный высокопроизводительным многоскоростным вентилятором. Воздухопроиз-водительность современных надплит-ных зонтов достигает 600-1000 м3/ч, что во много раз превышает показатель расчетного воздухообмена в квартире. Для удаления воздуха от надплитных зонтов, как правило, предусматриваются отдельные воздуховоды, не связанные с системой общеобменной вытяжной вентиляции из кухни. Компенсационный расход приточного воздуха обеспечивается приточным клапаном в стене, открываемым в период работы зонта. Общий вывод по сравниваемым вариантам можно сделать следующий: наибольшей эффективностью по воздушно-тепловому комфорту и экономии тепловой энергии обладает вариант В с утилизацией теплоты вытяжного воздуха; для нормализации акустического режима требуются дополнительные меры по шумозащите вентиляторной установки.

Постоянно работающая вентиляция квартир с использованием приточных клапанов (вариант Б), встроенных в створки окон или наружные стены, при низких температурах наружного воздуха может привести к тепловому дискомфорту, связанному с неравномерным распределением температуры и скорости движения воздуха в помещениях. Несмотря на то что рекомендуется располагать приточные клапаны над или за отопительными приборами, специалисты в Западной Европе ограничивают эффективную область применения таких систем вентиляции районами с температурой наружного воздуха не ниже -10 °С. Наибольший интерес представляет вариант вентиляции В, т. е. механическая приточно-вытяжная вентиляция с утилизацией теплоты удаляемого воздуха в рекуперативных теплообменниках. Именно по этой системе произведено проектирование и строительство экспериментальной системы.

Экспериментальное здание состоит из четырех секций; общее количество квартир - 264. Под зданием размещен гараж-стоянка на 94 автомобиля. На 1-м этаже находятся вспомогательные нежилые помещения, два верхних этажа отведены под спортивно-оздоровительный центр. Жилые квартиры располагаются со 2-го по 16-й этаж. В квартирах свободной планировки от 60 до 200 м2 общей площади предусмотрены, помимо жилых помещений, кухня, ванная комната с санузлом, постирочная, гостевой туалет, кладовые помещения, застекленные лоджии. Здание построено по индивидуальному проекту (архитектор П. П. Пахомов). Конструктивные решения здания представляют собой монолит с эффективным утеплителем с кирпичной облицовкой. Концепция энергосберегающих решений здания разработана под руководством президента Ассоциации инженеров по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизики, профессора Ю. А. Табунщикова, архитектурной мастерской «Архитекторы-XXI век», ОАО «ЦНИИПРОМЗДАНИЙ», ООО «НПО “ТЕРМЭК”».

Проектом предусмотрено комплексное решение, в котором функционально связаны энергосберегающие архитектурно-планировочные решения, эффективные ограждающие конструкции и инженерные системы нового поколения.

Конструкции здания имеют высокий уровень теплозащиты. Так, сопротивление теплопередаче стен составляет 3,33 м2 °С/Вт, металлопластиковых окон с двухкамерными стеклопакетами - 0,61 м2*°С/Вт, верхних покрытий - 4,78 м2 °С/Вт, лоджии застеклены солнцезащитными тонированными стеклами.

Внутренние параметры воздуха для холодного периода приняты следующими: – жилые комнаты - 20 °С; – кухня - 18 °С; – ванная - 25 °С; – туалет - 18 °С.

В здании запроектирована горизонтальная поквартирная система отопления с периметральной разводкой трубопроводов по квартире. Металлопластиковые трубы с теплоизоляцией в защитной гофре замоноличены в подготовку «черного» пола. На все здание общей площадью около 44 тыс. м2 в системе отопления жилой части всего четыре пары стояков (подающий и обратный) по числу секций. На каждом этаже в лифтовом холле к стоякам присоединены распределительные коллекторы к квартирам. Коллекторы оборудованы арматурой, балансировочными вентилями и квартирными счетчиками теплоты.

В здании запроектирована и реализована поквартирная регулируемая приточно-вытяжная система вентиляции с утилизацией теплоты удаляемого воздуха.

Компактный приточно-вытяжной агрегат с пластинчатым рекуператором размещен в подшивном потолке гостевого туалета рядом с кухней.

Забор приточного воздуха осуществляется через теплоизолированный воздуховод и отверстие в наружной стене, выходящей на лоджию кухни. Удаляемый воздух забирается из помещения кухни. Вытяжка из туалетов и ванной комнаты не теплоутилизируется, т. к. на момент согласования проекта нормативы запрещали объединять в пределах квартиры в одну вентиляционную сеть вытяжки кухни, ванной комнаты и туалета. В настоящее время согласно «Техническим рекомендациям по организации воздухообмена в квартирах многоэтажного жилого дома» это ограничение снято.

В условиях свободной планировки квартир объединение общим горизонтальным вытяжным воздуховодом трех-четырех зон требует специальных архитектурно-планировочных решений, устройства в квартире горизонтальной сети воздуховодов, что трудно осуществимо по конструктивным соображениям.

В отопительный период 2003-2004 годов в 3-комнатной квартире на 12-м этаже были проведены предварительные испытания квартирной системы вентиляции с утилизацией теплоты удаляемого воздуха. Общая площадь квартиры составляет 125 м2. Испытания проводились в квартире без отделки, без межкомнатных перегородок и дверей. Выборочные результаты испытаний приведены в табл. 22. Температура наружного воздуха 4 составляла от +4,1 до -4,5 °С при преимущественно облачной погоде. Температура воздуха в помещении tB поддерживалась квартирной системой отопления со стальными радиаторами, оборудованными термостатическими вентилями, в диапазоне от 22,8 до 23,7 °С. В ходе испытаний с помощью увлажнителей воздуха изменялась относительная влажность воздуха ф от 25 до 45%.

В квартире был установлен рекуперативный теплоутилизатор, максимальной производительностью по приточному воздуху Lnp = 430 м3/ч. Объем удаляемого воздуха Ь„игутл составлял примерно 60-70% от приточного, что обусловлено настройкой аппарата на утилизацию только части удаляемого воздуха.
Аппарат оборудован воздушными фильтрами приточного и вытяжного тракта и двумя электрическими нагревателями. Первый нагреватель номинальной мощностью 0,6 кВт предназначен для защиты вытяжного тракта от замораживания конденсата, который специальной дренажной трубкой через гидрозатвор отводится в канализацию. Второй нагреватель мощностью 1,5 кВт предназначен для догрева приточного воздуха tw до заданного комфортного значения.

Рис. 46. План квартиры с системой вентиляции: 1 – приточно-вытяжная установка с утилизатором; 2 – воздухозабор с лоджии; 3 – вытяжка из кухни; 4 – вытяжка из гостевого туалета; 5 – вытяжка из гардеробной; 6 - вытяжка из ванной; 7 - потолочный перфорированный воздухораспределитель

Для простоты монтажа он также выполнен электрическим.

В процессе испытания проводились измерения температуры и влажности наружного, внутреннего и удаляемого воздуха, расхода приточного и удаляемого воздуха, расхода теплоты квартирной системой отопления Qm по показаниям теплосчетчика, расхода электроэнергии.

Теплоутилизатор оборудован системой автоматики с контроллером и пультом управления. Система автоматики предусматривает включение первого нагревателя при достижении температуры стенки теплообменника ниже +1 °С, второй нагреватель может включаться и отключаться, обеспечивая постоянство заданной температуры приточного воздуха, которая находилась в процессе испытаний в диапазоне от 15 до 18,3 °С. Система управления вентиляторами позволяет выбрать три фиксированных режима расхода воздуха, соответствующих кратности воздухообмена от 0,48 до 1,15 1/ч.

Контроль и задание температуры и расхода воздуха осуществляется с дистанционного проводного пульта управления.

Испытания показали устойчивую работу квартирной системы вентиляции и энергетическую эффективность утилизации теплоты удаляемого воздуха.

Следует отметить ряд особенностей в проведении исследований, которые нельзя не принимать во внимание при оценке показателей воздушно-теплового режима квартиры.

1. В новостройках свежий бетон и раствор выделяют значительное количество влаги в помещения. Период, в течение которого влага в строительных конструкциях приходит в равновесное состояние, достигает 1,5-2 лет. Так, в результате испытаний примерно через полгода после заполнения монолита и укладки стяжки влагосодержание внутреннего воздуха при наличии вентиляции составляло 4-4,5 г/кг сухого воздуха, в то время как влагосодержание наружного воздуха не превышало 1-1,5 г/кг сухого воздуха.

По нашим оценкам, в монолитном здании для приведения конструкций в равновесное влажностное состояние необходимо ассимилировать до 200 кг влаги на каждый кв. метр площади пола. Количество теплоты, необходимое для испарения этой влаги, в начальный период равно 10-15 Вт/м2, а в период испытаний - 5-7 Вт/м2, что составляет значительную часть в тепловом балансе квартиры в холодный период года. Не учитывать этот фактор при осуществлении отопления и вентиляции опрометчиво, особенно в монолитном домостроении.

2. В процессе испытаний отсутствовали так называемые внутренние бытовые тепловыделения, размер которых в нормативах предлагается принимать 10 Вт/м2.
Представляется, что этот показатель должен быть дифференцированным в зависимости от площади квартиры на одного жителя.

В больших квартирах (более 100 м2) с площадью на одного человека 30-50 м2 вероятное значение этого показателя должно снижаться до 5-8 Вт/м2. В противном случае проектная тепловая мощность систем отопления и вентиляции зданий может оказаться заниженной на 10-30%.

Однако более целесообразно во время строительства, в частности зданий с монолитными конструкциями, выделяющими в помещения много влаги, перед сдачей зданий и особенно перед их заселением производить просушку с помощью находящихся в распоряжении строителей мощных электронагревателей. К сожалению, такая просушка до проведения испытаний не производилась.

Как отмечалось, рассматриваемое экспериментальное здание проектировалось и строилось как энергосберегающее. По результатам проведенных испытаний с поправками на прогнозируемые бытовые тепловыделения и теплоту испарения влаги в строительных конструкциях были рассчитаны удельные теплоэнергетические характеристики 3-комнатной квартиры в расчете на 1 м2 площади при поддержании в квартире температуры 20 °С.

Результаты расчетов показали, что после отделки квартир и заселения здания удельный расчетный годовой расход теплоты на отопление и вентиляцию снижается почти вдвое со 132 до 70 кВт ч/(м2 год), а с применением утилизации теплоты до 44 кВт ч/(м2 год).

Дальнейшая эксплуатация здания позволит проверить принятые в предварительных расчетах допущения.

Исследования экспериментальной системы должны охватить все факторы, характеризующие ее работу, в том числе и психологическое отношение жильцов, использующих новые для них устройства.

Электроподогрев воздуха в экспериментальной системе по сравнению с использованием для этой цели теплоты от теплофикации, к которой присоединено здание, экономически неоправдан. Такое решение было принято для удобства эксперимента, в частности, для замеров, касающихся расходов теплоты. Однако, по мнению авторов, со временем человечество начнет переходить на полное электротеплоснабжение жилых городских зданий. Поэтому экспериментальное исследование системы, в которой квартирная вентиляция работает с использованием электровоздухонагревателей, представляет интерес для будущего.

Предыстория развития

Тепло воздуха, который удаляется в атмосферу, является источником экономии энергоресурсов. Не секрет, что на подогрев воздуха, который поступает в здание расходуется 40…80% теплозатрат. Поэтому идея подогрева свежего воздуха за счет отработанного не нова. Еще в Советском Союзе непрерывно велись работы по созданию установок, которые бы позволяли использовать тепловую энергию вытяжного воздуха. Но к сожалению результаты этих исследований использовались только в специальных проектах (промышленного, оборонного назначения, научного значения).

За границей причиной применения, обуславливающей начало применения подобных установок, стал первый энергетический кризис. При этом, устройства утилизации тепловой энергии удаляемого воздуха, изначально проектировались для использования в многоквартирных жилых домах и коттеджах. Как следствие этого, сегодня воздушное отопление повсеместно применяется в Канаде и ближайших к ней штатах США. Так в Канаде не применяются вовсе водяные системы отопления.

В России утилизаторы тепла массово начали применяться с началом активного малоэтажного строительства, когда у частных застройщиков начал появляться интерес к энергоэффективному, энергосберегающему оборудованию.

Применение электроэнергии для отопления

Использование вентиляционной отопительной техники подразумевает применение электроэнергии для отопления. До недавнего времени применение электроэнергии для отопления было запрещено законодательно. Это связано с политикой экономии энергии, проводимой в Советском Союзе. Со времени распада Советского Союза многое изменилось.

В настоящее время, когда начинают применяться новые материалы и осваиваться новые технологии, мнение специалистов о допустимости применения электроэнергии для отопления начинает меняться. Ввод в действие 2000 года новых норм, которые требуют улучшения теплозащиты жилых зданий, способствует этому. Согласно новых норм, нормируемые потери тепла через наружные стены сокращаются в 2,5–3,0 раза по сравнению с нормами 1995 г.

В будущем нормы по теплозащите и энергоэффективности будут только ужесточаться. В этих условиях исчезнет само понятие инфильтрации воздуха, помещения будут герметичными. В таких условиях применению устройств утилизации тепла откроются самые широкие перспективы.

Существующие виды рекуператоров

Настоящая номенклатура утилизаторов тепла очень разнообразна. Но все разнообразие можно свести к следующим типам: а) кожухотрубные и пластинчатые теплообменники, в том числе, перекрёстноточные; б) роторные (регенеративные); в) тепловые насосы с промежуточным рабочим телом. Возможности большинства современных устройств позволяют утилизировать и использовать для подогрева подаваемого в помещения воздуха только 60% тепла отработанного воздуха. Для объектов с небольшим объемом здания для того, чтобы установка утилизатора тепла окупилась необходимо, чтобы эта цифра составляла 90 %.

Перспективное направление развития утилизаторов тепла

Увеличить КПД утилизаторов тепла позволяет применение описанного ниже метода. Как известно, теплоемкость воды наибольшая по сравнению с другими жидкостями. Теплоёмкость воздуха в 4,5 раза ниже теплоёмкости воды. На использовании воды основана технология ультра-дисперсии удаляемого воздуха в воде. Для того чтобы увеличить скорость передачи тепла от удаляемого воздуха этот воздух специальным образом пропускают через воду, создавая пузырьки размером с микрон.

Скорость передачи тепла увеличивается так как микронных размеров пузырьки разрушают термическое сопротивления поверхностного слоя воды. Применение технологии технология ультра-дисперсии удаляемого воздуха в воде позволит использовать 90-95% тепла удаляемого воздуха. Важно, что рекуператор, построенный по указанной технологии, имеет минимальное число деталей, минимальные размеры, он прост в эксплуатации.

Способы применения утилизаторов тепла

  • Первый способ – применение теплоутилизатора рекуперативного типа. При этом имеет место частичный подогрев подаваемого в помещение воздуха.
  • Второй способ – утилизация теплоты с помощью тепловых насосов.
  • Третий способ – использование тепла уходящего воздуха для подогрева поступающей воды. Система включает в себя значительного габарита водонагреватели и аккумуляторы подогретой воды.

Современное положение дел в России по рассматриваемому вопросу

Федеральным законом № 261-ФЗ «Об энергосбережении и повышении энергетической эффективности…» предписано снизить энергоемкость инженерных систем здания. Стоит задача к 2020 году снизить энергоемкость ВВП на 40% к уровню 2007 года. Такая тенденция на увеличение энергоэффективности, улучшение теплозащиты повсеместна.

Постановлением Правительства Москвы № 900 от 5 октября 2010 года «О повышении энергетической эффективности жилых, социальных и общественно-деловых зданий в городе Москве…», установлен уровень энергопотребления, обеспечить невозможно без утилизации тепла.

Российская Федерация, вступив в ВТО, обязалась привести цены на энергоносители для внутренних потребителей к уровню мировых цен. Во всем мире вопросы энергоэффективности, а как следствие вопросы утилизации тепла стоят очень остро. Правительства стран вводят в действие и добиваются исполнения программ по улучшению энергоэффективности. Поэтому с ростом внутренних цен на энергоносители неизбежно будет расти интерес к установкам по утилизации тепла

В «русской печи» нагревался приточный воздух, с помощью этого прогревалось жилое помещение. В Европе систему отопления, где как в русской печи предусматривались каналы, называли «русской». Этим признана большая эффективность русской печи в сравнении с европейским отоплением. В настоящее время можно говорить о необходимости вернуться к истокам в вопросах отопления.

Приточно-вытяжная вентиляция с рекуперацией

ЛЕКЦИЯ

по учебной дисциплине"Тепло-массообменное оборудование предприятий"

(к учебному плану 200__г)

Занятие № 26. Теплообменники – утилизаторы. Конструкции, принцип действия

Разработал: к.т.н., доцент Костылева Е.Е.

Обсуждена на заседании кафедры

протокол № _____

от "_____" ___________2008 г.

Казань - 2008 г.

Занятие № 26 . Теплообменники – утилизаторы. Конструкции, принцип действия

Учебные цели:

1. Изучить конструкции и принцип различных теплообменников утилизаторов

Вид занятия: лекция

Время проведения : 2 часа

Место проведения : ауд. ________

Литература:

1. Электронные ресурсы Internet.

Учебно-материальное обеспечение:

Плакаты, иллюстрирующие учебный материал.

Структура лекции и расчет времени:

Одним из источников вторичных энергоресурсов в здании является тепловая энергия воздуха, удаляемого в атмосферу. Расход тепловой энергии на подогрев поступающего воздуха составляет 40...80% теплопотребления, большая ее часть может быть сэкономлена в случае применения так называемых теплообменников-утилизаторов.

Существуют различные типы теплообменников-утилизаторов.

Рекуперативные пластинчатые теплообменники выполняются в виде пакета пластин, установленных таким образом, что они образуют два смежных канала, по одному из которых движется удаляемый, а по другому - приточный наружный воздух. При изготовлении пластинчатых теплообменников такой конструкции с большой производительностью по воздуху возникают значительные технологические трудности, поэтому разработаны конструкции кожухотрубных теплообменников-утилизаторов ТКТ, представляющих собой пучок труб, расположенных в шахматном порядке и заключенных в кожух. Удаляемый воздух движется в межтрубном пространстве, наружный - внутри трубок. Движение потоков перекрестное.

Рис. 1 Теплообменники- утилизаторы:
а - пластинчатый утилизатор; б - утилизатор ТКТ;в - вращающийся; г - рекуперативный;
1 - корпус; 2 - приточный воздух; 3 - ротор; 4 - сектор продувной; 5 - вытяжной воздух; 6 - привод.

С целью предохранения от обледенения теплообменники снабжены дополнительной линией по ходу наружного воздуха, через которую при температуре стенок трубного пучка ниже критической (-20°С) перепускается часть холодного наружного воздуха.



Установки утилизации тепла вытяжного воздуха с промежуточным теплоносителем могут применяться системах механической приточно-вытяжной вентиляции, а также в системах кондиционирования воздуха. Установка состоит из расположенного в приточном и вытяжном каналах воздухонагревателя, соединенного замкнутым циркуляционным контуром, заполненным промежуточным носителем. Циркуляция теплоносителя осуществляется посредством насосов. Удаляемый воздух, охлаждаясь в воздухонагревателе вытяжного канала, передает тепло промежуточному теплоносителю, нагревающему приточный воздух. При охлаждении вытяжного воздуха ниже температуры точки росы на части теплообменной поверхности воздухонагревателей вытяжного канала происходит конденсация водяного пара, что приводит к возможности образования наледи при отрицательных начальных температурах приточного воздуха.

Установки утилизации тепла с промежуточным теплоносителем могут работать либо в режиме, допускающем образование наледи на теплообменной поверхности вытяжного воздухонагревателя в течение суток при последующем отключении и оттаивании, либо, если отключение установки недопустимо, при применении одного из следующих мероприятий по защите воздухонагревателя вытяжного канала от образования наледи:

  • предварительного нагрева приточного воздуха до положительной температуры;
  • создание байпаса по теплоносителю или приточному воздуху;
  • увеличения расхода теплоносителя в циркуляционном контуре;
  • подогрева промежуточного теплоносителя.

Выбор типа регенеративного теплообменника производят в зависимости от расчетных параметров удаляемого и приточного воздуха и влаговыделений внутри помещения. Регенеративные теплообменники могут устанавливаться в зданиях различного назначения в системах механической приточно-вытяжной вентиляции, воздушного отопления и кондиционирования воздуха. Установка регенеративного теплообменника должна обеспечивать противоточное движение воздушных потоков.

Систему вентиляции и кондиционирования воздуха с регенеративным теплообменником необходимо оснастить средствами контроля и автоматического регулирования, которые должны обеспечивать режимы работы с периодическим оттаиванием инея или предотвращением инееобразования, а также поддерживать требуемые параметры приточного воздуха. Для предупреждения инееобразования по приточному воздуху:

  • устраивают обводной канал;
  • предварительно подогревают приточный воздух;
  • изменяют частоту вращения насадки регенератора.

В системах с положительными начальными температурами приточного воздуха при утилизации тепла нет опасности замерзания конденсата на поверхности теплообменника в вытяжном канале. В системах с отрицательными начальными температурами приточного воздуха необходимо применять схемы утилизации, обеспечивающие защиту от обмерзания поверхности воздухонагревателей в вытяжном канале.

2. РАБОТА ТЕПЛООБМЕННИКА – УТИЛИЗАТОРА В СИСТЕМАХ ВЕНТИЛЯЦИИ И КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

Теплообменники-утилизаторы могутт быть использованы в системах вентиляции и кондиционирования воздуха для утилизации теплоты удаляемого из помещения вытяжного воздуха.

Потоки приточного и вытяжного воздуха подводят через соответствующие входные патрубки в перекрестноточные каналы теплообменного блока, выполненного, например, в виде пакета алюминиевых пластин. При движении потоков по каналам происходит передача теплоты через стенки от более теплого вытяжного воздуха к более холодному, приточному. Затем эти потоки выводят из теплообменника через соответствующие выходные патрубки.

По мере прохождения через теплообменник температура приточного воздуха снижается. При низкой температуре наружного воздуха она может достигнуть температуры точки росы, что ведёт к выпадению капельной влаги (конденсата) на поверхности, ограничивающие каналы теплообменника. При отрицательной температуре этих поверхностей конденсат превращается в иней или лёд, что естественно нарушает работу теплообменника. Для предотвращения образования инея или льда или их удаления в процессе работы данного теплообменника измеряют температуру в самом холодном углу теплообменника или (как вариант) разность давлений в канале вытяжного воздуха до и после теплообменного блока. При достижении предельного, заранее заданного значения измеряемым параметром теплообменный блок поворачивается на 180" вокруг своей центральной оси. Таким образом обеспечивается снижение аэродинамического сопротивления, затрат времени на предотвращение образования инея или его удаление и использование при этом всей теплообменной поверхности.

Задача заключается в снижении аэродинамического сопротивления потоку приточного воздуха, использование для процесса теплообмена всей поверхности теплообменника при проведении процесса предотвращения образования инея или его удаления, а также уменьшение затрат времени на проведение указанного процесса.

Достижению указанного технического результата способствует то, что параметром, по которому судят о возможности образования или наличии инея на поверхности холодной зоны теплообменника, служит либо температура его поверхности в самом холодном углу, либо разность давлений в канале вытяжного воздуха до и после теплообменного блока.

Предотвращение образования инея посредством нагрева поверхности подводимым в каналы с их выходной стороны при помощи поворота теплообменника на угол 180 о потоком вытяжного воздуха (при достижении измеряемым параметром предельного значения) обеспечивает постоянное аэродинамическое сопротивление потоку приточного воздуха, а также использование для теплообмена всей поверхности теплообменника в течение всего времени его работы.

Использование теплообменника-утилизатора дает заметную экономию средств на отопление помещений и снижает потери тепла, неотвратимо существующие при вентиляции и кондиционировании. А за счёт принципиально нового подхода к предупреждению образования конденсата с последующим появлением инея или льда, их полному удалению, значительно повышается эффективность работы данного утилизатора, что выгодно отличает его от других средств утилизации тепла вытяжного воздуха.

3. ТЕПЛООБМЕННИКИ-УТИЛИЗАТОРЫ ИЗ ОРЕБРЕННЫХ ТРУБ

Одним из источников вторичных энергоресурсов в здании является тепловая энергия воздуха, удаляемого в атмосферу. Расход тепловой энергии на подогрев поступающего воздуха составляет 40...80% теплопотребления, большая ее часть может быть сэкономлена в случае применения так называемых теплообменников-утилизаторов.

Существуют различные типы теплообменников-утилизаторов.

Рекуперативные пластинчатые теплообменники выполняются в виде пакета пластин, установленных таким образом, что они образуют два смежных канала, по одному из которых движется удаляемый, а по другому - приточный наружный воздух. При изготовлении пластинчатых теплообменников такой конструкции с большой производительностью по воздуху возникают значительные технологические трудности, поэтому разработаны конструкции кожухотрубных теплообменников-утилизаторов ТКТ, представляющих собой пучок труб, расположенных в шахматном порядке и заключенных в кожух. Удаляемый воздух движется в межтрубном пространстве, наружный - внутри трубок. Движение потоков перекрестное.

Рис. Теплообменники:
а - пластинчатый утилизатор;
б - утилизатор ТКТ;
в - вращающийся;
г - рекуперативный;
1 - корпус; 2 - приточный воздух; 3 - ротор; 4 - сектор продувной; 5 - вытяжной воздух; 6 - привод.

С целью предохранения от обледенения теплообменники снабжены дополнительной линией по ходу наружного воздуха, через которую при температуре стенок трубного пучка ниже критической (-20°С) перепускается часть холодного наружного воздуха.

Установки утилизации тепла вытяжного воздуха с промежуточным теплоносителем могут применяться системах механической приточно-вытяжной вентиляции, а также в системах кондиционирования воздуха. Установка состоит из расположенного в приточном и вытяжном каналах воздухонагревателя, соединенного замкнутым циркуляционным контуром, заполненным промежуточным носителем. Циркуляция теплоносителя осуществляется посредством насосов. Удаляемый воздух, охлаждаясь в воздухонагревателе вытяжного канала, передает тепло промежуточному теплоносителю, нагревающему приточный воздух. При охлаждении вытяжного воздуха ниже температуры точки росы на части теплообменной поверхности воздухонагревателей вытяжного канала происходит конденсация водяного пара, что приводит к возможности образования наледи при отрицательных начальных температурах приточного воздуха.

Установки утилизации тепла с промежуточным теплоносителем могут работать либо в режиме, допускающем образование наледи на теплообменной поверхности вытяжного воздухонагревателя в течение суток при последующем отключении и оттаивании, либо, если отключение установки недопустимо, при применении одного из следующих мероприятий по защите воздухонагревателя вытяжного канала от образования наледи:

  • предварительного нагрева приточного воздуха до положительной температуры;
  • создание байпаса по теплоносителю или приточному воздуху;
  • увеличения расхода теплоносителя в циркуляционном контуре;
  • подогрева промежуточного теплоносителя.

Выбор типа регенеративного теплообменника производят в зависимости от расчетных параметров удаляемого и приточного воздуха и влаговыделений внутри помещения. Регенеративные теплообменники могут устанавливаться в зданиях различного назначения в системах механической приточно-вытяжной вентиляции, воздушного отопления и кондиционирования воздуха. Установка регенеративного теплообменника должна обеспечивать противоточное движение воздушных потоков.

Систему вентиляции и кондиционирования воздуха с регенеративным теплообменником необходимо оснастить средствами контроля и автоматического регулирования, которые должны обеспечивать режимы работы с периодическим оттаиванием инея или предотвращением инееобразования, а также поддерживать требуемые параметры приточного воздуха. Для предупреждения инееобразования по приточному воздуху:

  • устраивают обводной канал;
  • предварительно подогревают приточный воздух;
  • изменяют частоту вращения насадки регенератора.

В системах с положительными начальными температурами приточного воздуха при утилизации тепла нет опасности замерзания конденсата на поверхности теплообменника в вытяжном канале. В системах с отрицательными начальными температурами приточного воздуха необходимо применять схемы утилизации, обеспечивающие защиту от обмерзания поверхности воздухонагревателей в вытяжном канале.

Выбор редакции
Что можно сделать из гальки своими руками? Воспользуйтесь этими идеями, и вы увидите, что камень – идеальный материал для декора.Морские...

Печальная красота осени, сотни оттенков золота, яркие красные пятна кленов, нежно-розовые бересклеты… Так хорошо сидеть ясным октябрьским...

Строительство частного дома всегда начинается с подготовки и заливки фундамента. Обустройство основания дома – один из самых важных и...

Подсветка для рассады как и что выбирать Энергосберегающие Люминесцентные Фитолампы Отражатели света Подсветка для рассады лампами и...
Яблоки нравятся практически всем людям. Но получить их урожай самостоятельно в любом случае приятнее, нежели приобретать в магазине...
Трудно назвать комфортным проживание без правильно работающей канализации, представляющей собой систему удаления сточных вод. Городские...
Цугунов Антон ВалерьевичВремя на чтение: 6 минут Изношенность коммунальных систем привела к низкому качеству воды, подаваемой в...
Вода – это источник жизни и здоровья. Но принести пользу человеку может только чистая вода. Чтобы избавиться от лишних химических...
Горный велосипед Основными особенностями горного велосипеда являются широкие (1.5 - 2.5 дюймов, вместо обычных 20-40 мм) колеса, чуть...