Измерение сопротивления изоляции кабелей и проводов. Измерение сопротивления изоляции электрооборудования: нормы и рекомендации Допустимое сопротивление кабеля 0.4 кв


На основе статьи "Measurement of insulation resistance (IR) - 2", http://electrical-engineering-portal.com

1. Значения сопротивления изоляции для электрического оборудования и систем

(Стандарт PEARL / NETA MTS-1997 Таблица 10.1)

Номинальное максимальное напряжение оборудования

Класс мегомметра

Правило 1 МОм для значения сопротивления изоляции оборудования

В зависимости от номинального напряжения оборудования:

< 1 кВ = не менее 1 МОм
> 1 кВ = 1 МОм на 1 кВ

В соответствии с правилами IE Rules - 1956

Когда в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 1000 В, сопротивление изоляции высоковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards). Средневольтные и низковольтные установки - Если в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 500 В, сопротивление изоляции средневольтных и низковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards). В соответствии со спецификациями CBIP допустимые значения составляют 2 МОм на кВ.

Средневольтные и низковольтные установки - если в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 500 В, сопротивление изоляции средневольтных и низковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards).

В соответствии со спецификациями CBIP допустимые значения составляют 2 МОм на кВ

2. Значение сопротивления изоляции для трансформатора

Тестирование сопротивления изоляции необходимо для определения сопротивления изоляции индивидуальных обмоток относительно земли или между индивидуальными обмотками. При таком тестировании сопротивление изоляции обычно либо измеряется непосредственно в МОм, либо рассчитывается, исходя из прикладываемого напряжения и величины тока утечки.

При измерении сопротивления изоляции рекомендуется всегда заземлять корпус (и сердечник). Замкните накоротко каждую обмотку трансформатора на выводах проходного изолятора. После этого проведите измерение сопротивления между каждой обмоткой и всеми остальными заземленными обмотками.


Тестирование сопротивления изоляции: между высоковольтной стороной и землей, и между высоковольтной и низковольтной сторонами.
HV1 (2, 3) — Низковольтный 1 (2, 3); LV1 (2, 3) — Высоковольтный 1 (2, 3))

При измерении сопротивления изоляции никогда не оставляйте незаземленными обмотки трансформатора. Для измерения сопротивления заземленной обмотки необходимо снять с нее глухое заземление. Если снять заземление невозможно, как в случае некоторых обмоток с глухозаземленными нейтралями, сопротивление изоляции такой обмотки будет невозможно измерить. Считайте их частью заземленного участка цепи.

Необходимо проводить тестирование между обмотками и между обмоткой и землей (E). На трехфазных трансформаторах необходимо тестировать обмотку (L1, L2, L3) за вычетом заземления для трансформаторов с соединением «треугольник» или обмотку (L1, L2, L3) с заземлением (Е) и нейтралью (N) для трансформаторов с соединением «звезда».

Значение сопротивления изоляции для трансформатора

Где С = 1,5 для маслозаполненных трансформаторов с масляным баком, 30 для маслозаполненных трансформаторов без масляного бака или для сухих трансформаторов.

Коэффициент поправки на температуру (относительно 20°C)

Пример для трехфазного трансформатора 1600 КВА, 20 кВ / 400 В :

  • значение сопротивления изоляции на высоковольтной стороне = (1,5 х 20000) / √1600 = 16000 / 40 = 750 МОм при 20°C;
  • значение сопротивления изоляции на низковольтной стороне = (1,5 х 400) / √1600 = 320 / 40 = 15 МОм при 20°C;
  • значение сопротивления изоляции при 30°C = 15 х 1,98 = 29,7 МОм.

Сопротивление изоляции обмотки трансформатора

Значение сопротивления изоляции трансформаторов

Напряжение

Напряжение тестирования (постоянный ток), низковольтная сторона

Напряжение тестирования (постоянный ток), высоковольтная сторона

Минимальное значение сопротивления изоляции

6,6 кВ - 11 кВ

11 кВ - 33 кВ

33 кВ - 66 кВ

66 кВ - 132 кВ

132 кВ - 220 кВ

Проведение измерения сопротивления изоляции трансформатора:

  • отключите трансформатор и отсоедините перемычки и молниеотводы;
  • разрядите межвитковую емкость;
  • полностью очистите все проходные изоляторы;
  • замкните обмотки накоротко;
  • защитите выводы во избежание поверхностной утечки по изоляторам выводов;
  • запишите окружающую температуру;
  • подсоедините испытательные провода (избегайте дополнительных соединений);
  • подайте испытательное напряжение и запишите показания. Значение сопротивления изоляции через 60 секунд после подачи испытательного напряжения принимается в качестве сопротивления изоляции трансформатора при температуре проведения тестирования;
  • вывод нейтрали трансформатора во время тестирования должен быть отсоединен от земли;
  • также во время тестирования должны быть отсоединены все соединения с землей молниеотвода на низковольтной стороне;
  • из-за индуктивных характеристик трансформатора показания сопротивления изоляции необходимо снимать только после стабилизации испытательного тока;
  • не снимайте показания сопротивления, когда трансформатор находится в условиях вакуума.

Подключения трансформатора при проведении тестирования сопротивления изоляции (не меньше 200 МОм)

Трансформатор с двумя обмотками

2. Высоковольтная обмотка - (низковольтная обмотка + земля)
3. Низковольтная обмотка - (высоковольтная обмотка + земля)

Трансформатор с тремя обмотками
1. Высоковольтная обмотка - (низковольтная обмотка + обмотка ответвления + земля)
2. Низковольтная обмотка - (высоковольтная обмотка + обмотка ответвления + земля)
3. (Высоковольтная обмотка + низковольтная обмотка + обмотка ответвления) - земля
4. Обмотка ответвления - (высоковольтная обмотка + низковольтная обмотка + земля)

Автотрансформатор (две обмотки)
1. (Высоковольтная обмотка + низковольтная обмотка) - земля

Автотрансформатор (три обмотки)
1. (Высоковольтная обмотка + низковольтная обмотка) - (обмотка ответвления + земля)
2. (Высоковольтная обмотка + низковольтная обмотка + обмотка ответвления) - земля
3. Обмотка ответвления - (высоковольтная обмотка + низковольтная обмотка + земля)

Для любой изоляции измеренное сопротивление изоляции не должно быть меньше :

  • высоковольтная обмотка - земля 200 МОм;
  • низковольтная обмотка - земля 100 МОм;
  • высоковольтная обмотка - низковольтная обмотка 200 МОм.

Факторы, влияющие на значение сопротивления изоляции трансформатора

На значение сопротивления изоляции трансформаторов влияет следующее:

  • состояние поверхности проходного изолятора вывода;
  • качество масла;
  • качество изоляции обмотки;
  • температура масла;
  • длительность использования и значение испытательного напряжения.

3. Значение сопротивления изоляции для переключателя выходных обмоток

  • сопротивление изоляции между высоковольтной и низковольтной обмотками, а также между обмотками и землей;
  • минимальное значение сопротивления для переключателя выходных обмоток составляет 1000 Ом на один вольт рабочего напряжения.

Для измерения сопротивления обмотки электродвигателя с заземлением (Е) используется тестер изоляции.

  • для номинального напряжения ниже 1 кВ измерение проводится мегомметром на 500 В постоянного тока;
  • для номинального напряжения выше 1 кВ измерение проводится мегомметром на 1000 В постоянного тока;
  • в соответствии с IEEE 43, статья 9.3, следует применять следующую формулу:
    минимальное значение сопротивления изоляции (для вращающейся машины) = (Номинальное напряжение (В) / 1000) +1.


В соответствии со стандартом IEEE 43 1974, 2000

Пример 1: Для трехфазного электродвигателя 11 кВ

  • значение сопротивления изоляции = 11 + 1 = 12 МОм, но в соответствии с IEEE43 должно быть 100 МОм.

Пример 2: Для трехфазного электродвигателя 415 В

  • значение сопротивления изоляции = 0,415 + 1 = 1,41 МОм, но в соответствии с IEEE43 должно быть 5 МОм;
  • в соответствии с IS 732 минимальное значение сопротивления изоляции для электродвигателя = (20 х Напряжение (р-р)) / (1000 + 2 х кВт).

Значение сопротивления изоляции электродвигателя в соответствии с NETA ATS 2007. Раздел 7.15.1

Шильдик электродвигателя (В)

Испытательное напряжение

Минимальное значение сопротивления изоляции

500 В постоянного тока

1000 В постоянного тока

1000 В постоянного тока

1000 В постоянного тока

2500 В постоянного тока

2500 В постоянного тока

2500 В постоянного тока

5000 В постоянного тока

15000 В постоянного тока

Значение сопротивления изоляции погружного электродвигателя

5. Значение сопротивления изоляции для электрических кабелей и проводки

Для тестирования изоляции необходимо отсоединить кабели от панели или оборудования, а также от источника электропитания. Проводку и кабели следует тестировать друг относительно друга (фаза с фазой) с кабелем заземления (Е). Ассоциация IPCEA (Insulated Power Cable Engineers Association) предлагает формулу определения минимальных значений сопротивления изоляции.

R = K x Log 10 (D/d)

R = Значение сопротивления изоляции в МОм на 305 метров кабеля
К = Постоянная изоляционного материала. (Электроизоляционная лакоткань = 2460, термопластичный полиэтилен = 50000, композитный полиэтилен = 30000)
D = Внешний диаметр изоляции проводника для одножильного провода или кабеля (D = d + 2c + 2b диаметр одножильного кабеля)
d = Диаметр проводника
c = Толщина изоляции проводника
b = Толщина изолирующей оболочки

Высоковольтное тестирование нового кабеля XLPE (в соответствии со стандартом ETSA)

Кабели 11 кВ и 33 кВ между сердечником и землей (в соответствии со стандартом ETSA


Измерение значения сопротивления изоляции (между проводниками (перекрестная изоляция))

  • первый проводник, для которого проводится измерение перекрестной изоляции, необходимо подключить к выводу Line мегомметра. Другие проводники соединяются вместе (с помощью зажимов типа «крокодил») и подсоединяются к выводу Earth мегомметра. На другом конце проводники не соединяются;
  • после этого поверните ручку или нажмите кнопку мегомметра. На дисплее измерительного прибора будет показано сопротивление изоляции между проводником 1 и остальными проводниками. Показания сопротивления изоляции следует записать;
  • потом подсоедините к выводу Line мегомметра другой проводник, а другие проводники соедините с выводом заземления мегомметра. Проведите измерение.

Измерение значения сопротивления изоляции (изоляция между проводником и землей)

  • подсоедините тестируемый проводник к выводу Line мегомметра;
  • соедините вывод Earth мегомметра с землей.;
  • поверните ручку или нажмите кнопку мегаомметра. На дисплее измерительного прибора будет показано сопротивление изоляции проводников. После поддержания испытательного напряжения в течение минуты до получения стабильных показаний следует записать значение сопротивления изоляции.

Измеряемые значения:

  • если во время периодического тестирования получено сопротивление изоляции подземного кабеля при соответствующей температуре от 5 МОм до 1 МОм на километр, данный кабель должен быть включен в программу замены;
  • если измеренное сопротивление изоляции подземного кабеля при соответствующей температуре от 1000 кОм до 100 кОм на километр, данный кабель следует заменить срочно, в течение года;
  • если измеренное сопротивление изоляции кабеля меньше 100 кОм на километр, данный кабель следует заменить немедленно как аварийный.

6. Значение сопротивления изоляции для линии передачи/распределительной линии

7. Значение сопротивления изоляции для шины панели

Значение сопротивления изоляции для панели = 2 х номинальное напряжение панели в кВ
Например, для панели 5 кВ минимальное сопротивление изоляции 2 х 5 = 10 МОм.

8. Значение сопротивление изоляции для оборудования подстанции

Обычными значениями сопротивления для оборудования подстанции являются:

Типовое значение сопротивление изоляции для оборудования подстанции

Оборудование

Класс мегомметра

Минимальное значение сопротивления изоляции

Автоматический выключатель

(Фаза - Земля)

(Фаза - Фаза)

Цепь управления

(Первичная - Земля)

(Вторичная - Фаза)

Цепь управления

Изолятор

(Фаза - Земля)

(Фаза - Фаза)

Цепь управления

(Фаза - Земля)

Электродвигатель

(Фаза - Земля)

Распределительное устройство LT

(Фаза - Земля)

Трансформатор LT

(Фаза - Земля)

Значение сопротивления изоляции оборудования подстанции в соответствии со стандартом DEP:

Оборудование

Измерение

Значение сопротивления изоляции на момент ввода в эксплуатацию (МОм)

Значение сопротивления изоляции на момент обслуживания (МОм)

Распределительное устройство

Высоковольтная шина

Низковольтная шина

Низковольтная проводка

Кабель (минимально 100 метров)

(10 х кВ) / км

Электродвигатель и генератор

Фаза - Земля

Трансформатор, погруженный в масло

Высоковольтный и низковольтный

Трансформатор, сухого типа

Высоковольтный

Низковольтный

Стационарное оборудование/инструменты

Фаза - Земля

5 кОм на вольт

1 кОм на вольт

Съемное оборудование

Фаза - Земля

Распределительное оборудование

Фаза - Земля

Автоматический выключатель

Цепь питания

2 МОм на кВ

Цепь управления

Цепь постоянного тока - Земля

Цепь LT - Земля

LT - Цепь постоянного тока

9. Значение сопротивления изоляции для бытовой/промышленной проводки

Низкое сопротивление между проводниками фазы и нейтрали или между находящимися под напряжением проводниками и землей будет приводить к возникновению тока утечки. Это приводит к ухудшению изоляции, а также к потерям энергии, что выльется в увеличение эксплуатационных расходов на установленную систему.
При обычных напряжениях электропитания сопротивление между фазой-фазой-нейтралью-землей никогда не должно быть меньше 0,5 МОм.

Кроме тока утечки из-за активного сопротивления изоляции существует также ток утечки из-за ее реактивного сопротивления, так как она работает как диэлектрик конденсатора. Этот ток не рассеивает никакой энергии и не является вредным, но нам нужно измерять активное сопротивление изоляции, поэтому для предотвращения включения в измерение реактивного сопротивления при тестировании используется напряжение постоянного тока.

Однофазная проводка

Тестирование сопротивления изоляции между фазой-нейтралью и землей должно выполняться на всей установке с отключенным включателем питания, при соединенных вместе фазе и нейтрали, с отключенными лампами и другим оборудованием, но при замкнутых автоматических выключателях и при всех замкнутых выключателях цепей.

Если используется переключение на два направления, будет тестироваться только один из двух проводов. Для тестирования другого провода необходимо задействовать оба переключателя на два направления и повторно протестировать систему. При необходимости установку можно тестировать как единое целое, но тогда необходимо получить значение не менее 0,5 МОм.


Трехфазная проводка

В случае очень большой установки, имеющей большое количество параллельных соединений с землей, можно ожидать более низкие показания. В этом случае необходимо повторить тестирование после разделения системы. Каждая из таких частей должна соответствовать минимальным требованиям.

Тестирование сопротивления изоляции должно выполняться между фазой-фазой-нейтралью-землей. Минимально допустимое значение для каждого теста 0,5 МОм.

Тестирование сопротивления изоляции для низкого напряжения

Минимальное значение сопротивления изоляции = 50 МОм / количество электрических розеток (все электрические точки с установочными элементами и вилками)

Минимальное значение сопротивления изоляции = 100 МОм / количество электрических розеток (все электрические точки без установочных элементов и вилок)

Меры безопасности при измерении сопротивления изоляции

Высокое испытательное напряжение может привести к повреждению такого электронного оборудования, как электронные стартеры люминесцентных ламп, сенсорные переключатели, переключатели с диммером, контроллеры электропитания. Поэтому подобное оборудование следует отсоединять.

Также следует отсоединять конденсаторы и индикаторные или контрольные лампы, потому что они могут стать причиной получения неточных результатов тестирования.

Если для проведения тестирования отсоединяется какое-либо оборудование, для него необходимо проводить собственное испытание изоляции с использованием напряжения, которое не приведет к их повреждению. Результат должен соответствовать указанному в стандарте Великобритании или быть не меньше 0,5 МОм, если не указан в стандарте.

С металлическими токопроводящими жилами производится с целью определения его работоспособности. От данного показателя в том числе зависит качество передаваемого по проводникам сигнала. Результатом снижения сопротивления изоляции, как правило, становится появление помех на линии, что, в свою очередь, приводит к возникновению звуковых шумов (телефонная линия), снижению пропускной способности (цифровые системы передачи данных) или же полный обрыв сообщения.

Согласно ГОСТ 15125-92 измерение сопротивления изоляции кабеля связи должно осуществляться раз в 6 месяцев.

Нормы сопротивления изоляции кабеля связи

Электрические нормы кабелей связи определяют минимальные значения сопротивления внешней изоляции и изоляции жил, при которых кабельная продукция допускается к использованию. Величина сопротивления зависит от типа и предназначения кабеля.

Требования к значениям сопротивления изоляции вводимых в эксплуатацию кабелей приведены в ГОСТ 15125-92, ОСТ 45.01-98, ОСТ 45.83-96 и прочей нормативно-технической документации. Рассмотрим несколько примеров.

Нормы сопротивления изоляции кабелей связи, наиболее часто применяемых для строительства первичных сетей, ГТС и других линий (значения на 1 км длины кабеля, без оконечных / с оконечными устройствами):

Кабели с трубчато-бумажной и пористо-бумажной изоляцией ( , и т. п.) — 8000/1000 МОм.
. Полиэтиленовая изоляция (марки — , и другие) — 6500/1000 МОм.
. Кордельно-бумажная изоляция ( , и т. п.) — 10000/3000 МОм.

Испытание кабелей связи

Измерение сопротивления изоляции кабеля связи также производятся согласно нормативным требованиям. При выполнении этой задачи важно учитывать текущую температуру и влажность воздуха. Все электрические параметры кабелей связи приводятся производителями при условии проведения испытаний при температуре +20 °С и длине кабельного изделия 1 км. Отклонение этих параметров от нормы приводит к увеличению или уменьшению показаний. Однако существуют простые формулы, позволяющие произвести перерасчет сопротивления в зависимости от температуры и длины.

Оборудование

Измерение сопротивления изоляции кабеля связи производится специальным прибором, называемым мегаомметром. Для определения нужной электрической величины данные устройства генерируют определенное напряжение (от 100 В и более).

На текущий момент используются две разновидности мегаомметров — цифровые и аналоговые. В первом случае для генерации напряжения используются электромеханические (ручные) генераторы и стрелочные индикаторы. Цифровые мегаомметры для генерации напряжения используют, как правило, гальванические элементы или аккумуляторные батареи. Результаты измерений выводятся на цифровое табло. Также некоторые модели мегаомметров не имеют собственного генератора тока и требуют подключения внешнего источника питания.

Для тестирования кабельных линий также широко применяются рефлектомеры, способные определять различные дефекты кабеля локационным (рефлектометрическим) методом. Принцип работы устройств следующий:

На жилы тестируемого кабеля подаются коротковолновые электрические импульсы.
. При наличии в кабеле каких-либо дефектов, подаваемый импульс отражается от препятствия и возвращается обратно к прибору.
. Возвращенный сигнал улавливается датчиками рефлектомера, измеряется, анализируется, после чего результат измерений отображается на дисплее.

Таким образом, при помощи рефлектомеров можно обнаружить обрывы, короткие замыкания, перепутанные пары, плотную землю и другие дефекты, которые имеют место в том числе при повреждении изоляции кабеля.

Требования и методика испытания кабелей связи

Измерение параметров кабелей связи (изоляции) — процесс несложный, но требует соблюдения установленных нормативной документацией (в частности — ГОСТ 3345-76, ГОСТ 2990-78) требований. Если кратко:

Перед проведением работ кабель должен быть обесточен и отсоединен от всех оконечных устройств и проводников (если это, например, кабель ГТС, испытываемые жилы отсоединяются от клемм распределительных щитков).
. Нельзя проводить испытания мегаомметром над кабелями, расположенными в непосредственной близости с другими электросистемами, т. к. генерируемое прибором напряжение способно создавать мощные электромагнитные поля, которые могут нарушить работу этих систем.
. Нельзя проводить испытания воздушных линий связи в грозу.
. Испытываемые проводники (жилы) должны быть заземлены.
. Отсоединять испытываемый проводник от «земли» можно только после его подключения к соответствующим клеммам мегаомметра (т. е. сначала подключается прибор, а только затем провода отсоединяются от «земли»).
. Перед выполнением и после проведения измерений проводник должен быть освобожден от остаточного тока путем короткого замыкания. Эта операция также выполняется над измерительными щупами мегаомметра.
. Для получения точного результата ток пропускается по испытываемому проводнику в течение (и не более!) 1 минуты. После проведения испытаний прибору и испытываемому проводнику дают «остыть» в течение 2 и более минут, если в соответствующей документации к мегаомметру и/или кабелю не приведены другие цифры.
. Все прочие требования к безопасности приведены в ГОСТ 2990-78.

Теперь рассмотрим процесс измерения сопротивления изоляции кабеля связи на примере коаксиальной пары без защитного экрана (будем измерять сопротивление изоляции жил). Согласно ГОСТ 2990-78, условная схема приложения напряжения к жилам кабеля выглядит следующим образом:

Жила «1» подключается к входу «R-» (вход также может быть обозначен, как «-», «Земля» или «З») мегаомметра.
. Жила «1» и вход «R-» мегаомметра заземляются.
. Жила «2» подключается к входу-источнику напряжения «R+» («+», «Rx», «Линия» или «Л») мегаомметра.

Условная рабочая схема:

Процесс проведения измерений:

Сначала на мегаомметре устанавливают уровень выходного напряжения, который зависит от марки испытуемого кабеля (обычно для проверки кабелей связи достаточно подать напряжение в 500 В).
. После подачи напряжения в цепь мегаомметру потребуется около 1 минуты для проведения измерений. Если это стрелочный прибор, необходимо дождаться ее полной остановки, для этого мегаомметр должен находиться в неподвижном состоянии. В случае с цифровыми приборами делать это необязательно.
. При необходимости измерения проводят несколько раз. Как было сказано выше, перед каждой процедурой прибору дают «остыть» в течение примерно 2 минут (плюс-минус — зависит от характеристик мегаомметра).

На показания сильно влияет температура окружающей среды (чем она выше, тем ниже сопротивление и наоборот). Если ее значение отлично от +20 градусов, необходимо воспользоваться следующей «корректирующей» формулой:

R_(20)=K*R_1, где:

R_(20)- сопротивление изоляции кабеля (в нашем случае сопротивление изоляции жил) при +20 °С (указывается в паспорте к марке кабеля);

R_1 — сопротивление, полученное в результате измерений при температуре, отличной от +20 °С;

K — «корректирующий» коэффициент, позволяющий определить такое значение сопротивления изоляции, которое бы имело место при +20 °С (коэффициенты приведены в приложении к ГОСТ 3345-76).

Например, возьмем кабель с полиэтиленовой изоляцией, первоначальное сопротивление которой (без оконечных устройств) составляет 5000 МОм. После измерения сопротивления жил при температуре в 15 °С получили результат, допустим, в 11 500 МОм. Согласно ГОСТ 3345-76, поправочный коэффициент «K» в случае с полиэтиленовой изоляцией жил составляет 0,48. Подставив это значение в формулу, имеем:

R_(20)=0,48*12500=5520 (сопротивление при нормальных условиях)

По следующей формуле можно определить сопротивление изоляции в зависимости от длины кабеля:

R=R_(20)* l, где:

R_(20)- сопротивление изоляции при +20 °С;

l — длина испытываемого кабеля;

Возьмем ту же марку кабеля длиной в 1,5 км. Нам известно первоначальное сопротивление изоляции жил при нормальных условиях — 5000 МОм. Отсюда:

R=6500* 1,5=7500 МОм

Компания «Кабель.РФ ® » является одним из лидеров по продаже кабельной продукции и располагает складами, расположенными практически во всех регионах Российской Федерации. Проконсультировавшись со специалистами компании, вы можете приобрести нужную вам марку по выгодным ценам.

Доброе время суток, друзья!

Я заметил, что есть много вопросов по измерениям изоляции кабеля. Поэтому сегодняшняя статья будет посвящена этой теме.

Следует разделять кабели, провода и шнуры на напряжение до 1000В и кабели на напряжение выше 1000В.

Первые в свою очередь делятся на силовые и контрольные.

В соответствии с ГОСТ 15845-80

Силовой кабель: кабель для передачи электрической энергии токами промышленных частот.

Кабель управления: кабель для цепей дистанционного управления, релейной защиты и автоматики.

Контрольный кабель: кабель для цепей контроля и измерения на расстоянии электрических и физических параметров.

Сопротивление изоляции – отношение напряжения приложенного к диэлектрику к протекающему сквозь него току (току утечки).

Ненормированная измеряемая величина – величина, абсолютное значение которой не регламентировано нормами.

Состояния изоляции, считают удовлетворительным, если каждая цепь с соединенными электроприемниками имеет сопротивление изоляции не менее соответствующего нормативного значения, приведенных ниже:

Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм.

Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется . (Возможность ввода кабеля на напряжение выше 1000В в работу определяется по величине тока утечки при испытании изоляции повышенным выпрямленным напряжением и отсутствием пробоев изоляции).

Измерение следует проводить до и после испытания кабеля повышенным напряжением (ПУЭ изд.6 пп. 1.8.37(2)).

В необходимых случаях перед измерением концы испытуемого изделия должны быть разделаны.

Для повышения точности измерения допускается на концевых разделках устанавливать охранные кольца, которые должны быть при измерении заземлены или присоединены к экрану измерительной схемы.

Время выдержки образцов перед проведением испытаний при температуре окружающей среды должно быть не менее 1 ч, если в стандартах или технических условиях на конкретные кабельные изделия не указано другое время выдержки.

Выполнение измерений мегаомметром ЭС0202/2г (М4100/3(4,5)).

При выполнении измерений выполняют следующие операции:

Установить переключатель измерительных напряжений в нужное положение в соответствие с величиной требуемого испытательного напряжения, а переключатель диапазонов в положение «1».

При вращении рукоятки генератора начинает светиться индикатор ВН, что свидетельствует о наличии выходного напряжения на клеммах прибора.

Убедившись в отсутствии напряжения на объекте, подключить объект к гнездам « r х». При необходимости экранировки, для уменьшения влияния токов утечки, экран объекта подсоединить к гнезду «Э».

Для проведения измерений вращать рукоятку генератора со скоростью (120 ¸ 140) оборотов в минуту. После установления стрелочного указателя, сделать отсчет значения измеренного сопротивления. При необходимости переходить на другой диапазон.

Порядок измерения сопротивления изоляции для кабелей приведен ниже:

В условиях действующих электроустановок отключать силовые кабели от коммутационных аппаратов не обязательно, исключение составляют случаи когда отключение связано с обеспечением безопасных условий работ – технические мероприятия при подготовке рабочего места. Принцип измерения сопротивления изоляции состоит в том, чтобы произвести измерение между каждыми парными проводниками кабеля и (в случае если кабель бронированный) между каждым проводником и бронёй. Иными словами необходимо измерить сопротивление изоляции между фазными проводниками, между каждым фазным проводником и нулевой жилой, между каждым проводником кабеля и РЕ- проводником (бронёй). Если в кабеле существует и РЕ-проводник и броня одновременно, то их можно считать одним проводником при измерении сопротивления изоляции. В случае, если в кабеле нет пятой жилы и нет брони, за РЕ-проводник можно принимать металлические конструкции РУ, заземление и заземлённых частей электрооборудования. Таким образом, можно выявить нарушение изоляции нулевой жилы и общей изоляции или оболочек кабеля.

Измерение сопротивления изоляции контрольных кабелей проводят аналогично. При измерении разрешается объединять все проводники вместе и измерять затем сопротивление изоляции всего пучка относительно одного, затем отсоединять следующий и т.д . Проводник, у которого изоляцию уже измерили, необходимо подключить к общему пучку проводников. Второй конец контрольного кабеля также должен быть «разделан» и все жилы разведены в воздухе. Таким образом, постепенно измеряется сопротивление изоляции каждой жилы кабеля относительно земли и других жил.

Если контрольный кабели уже установлен и все жилы его подключены к оборудованию, то сопротивление изоляции этого кабеля измеряют вместе с сопротивлением изоляции самого оборудования. Иными словами отключение кабеля от цепей оборудования не производится.

На этом сегодня все… Если у Вас возникли вопросы, задавайте. Отвечу в новых статьях.

О компании » Вопросы и ответы » Какая норма на сопротивление изоляции кабеля

Спасибо за вопрос! Если придерживаться ноты правил, то для кабеля с напряжением 380 В,сопротивление изоляции жил кабеля 2540 кОм вполне достаточная цифра. В нормативно технической документации сказано, что для изоляции жил кабеля напряжением до 1000 В сопротивление не должно быть менее 500 кОм или 0,5 МОм. В вашем же случае есть пятикратный запас. Но, учитывая опыт работы и огромное количество проведенных экспериментов, как правило сопротивление изоляции жил нового кабеля до 1000 Вольт, составляет порядка 10000-15000 кОм, то есть можно предположить, что срок службы вашего кабеля не будет продолжителен.

Так же есть еще один нюанс, а именно каким напряжением вы проводили испытания кабеля! В правилах и нормах испытаний сказано (ПУЭ гл. 1.8. п. 1.8.37, РД 34.45-51.300-97), что испытания производятся повышенным выпрямленным напряжением, в случае если кабель имеет не резиновую изоляцию. И в то же время, каждое такое испытание сокращает срок службы кабеля практически в два раза! Этот фактор стоит тоже учесть, а именно не стоит часто мучить кабель, иначе испытывать будет нечего.

Надеюсь, ответ был полон! В любом случае, звоните к нам специалисты нашей электролаборатории помогут ответить на все ваши вопросы.

  • 1. ПУЭ гл. 1.8. п. 1.8.37
  • 2. ПТЭЭП –Таблица 37

www.megaomm.ru

Нормы сопротивления изоляции кабеля связи | Полезные статьи - Кабель.РФ

Измерение величины сопротивления изоляции кабеля связи с металлическими токопроводящими жилами производится с целью определения его работоспособности. От данного показателя в том числе зависит качество передаваемого по проводникам сигнала. Результатом снижения сопротивления изоляции, как правило, становится появление помех на линии, что, в свою очередь, приводит к возникновению звуковых шумов (телефонная линия), снижению пропускной способности (цифровые системы передачи данных) или же полный обрыв сообщения.

Согласно ГОСТ 15125-92 измерение сопротивления изоляции кабеля связи должно осуществляться раз в 6 месяцев.

Нормы сопротивления изоляции кабеля связи

Электрические нормы кабелей связи определяют минимальные значения сопротивления внешней изоляции и изоляции жил, при которых кабельная продукция допускается к использованию. Величина сопротивления зависит от типа и предназначения кабеля.

Требования к значениям сопротивления изоляции вводимых в эксплуатацию кабелей приведены в ГОСТ 15125-92, ОСТ 45.01-98, ОСТ 45.83-96 и прочей нормативно-технической документации. Рассмотрим несколько примеров.

Нормы сопротивления изоляции кабелей связи, наиболее часто применяемых для строительства первичных сетей, ГТС и других линий (значения на 1 км длины кабеля, без оконечных / с оконечными устройствами):

Кабели с трубчато-бумажной и пористо-бумажной изоляцией (ТГШп, ТБпШп, ТКпШп, ТСтШп и т. п.) - 8000/1000 МОм. Полиэтиленовая изоляция (марки - ТППэп, ТППэпБ, ТПВБГ, СТПАПП, СТПАППБГ и другие) - 6500/1000 МОм. Кордельно-бумажная изоляция (ТЗБ, ТЗБГ, ТЗКл, ТЗБн и т. п.) - 10000/3000 МОм.

Испытание кабелей связи

Измерение сопротивления изоляции кабеля связи также производятся согласно нормативным требованиям. При выполнении этой задачи важно учитывать текущую температуру и влажность воздуха. Все электрические параметры кабелей связи приводятся производителями при условии проведения испытаний при температуре +20 °С и длине кабельного изделия 1 км. Отклонение этих параметров от нормы приводит к увеличению или уменьшению показаний. Однако существуют простые формулы, позволяющие произвести перерасчет сопротивления в зависимости от температуры и длины.

Оборудование

Измерение сопротивления изоляции кабеля связи производится специальным прибором, называемым мегаомметром. Для определения нужной электрической величины данные устройства генерируют определенное напряжение (от 100 В и более).

На текущий момент используются две разновидности мегаомметров - цифровые и аналоговые. В первом случае для генерации напряжения используются электромеханические (ручные) генераторы и стрелочные индикаторы. Цифровые мегаомметры для генерации напряжения используют, как правило, гальванические элементы или аккумуляторные батареи. Результаты измерений выводятся на цифровое табло. Также некоторые модели мегаомметров не имеют собственного генератора тока и требуют подключения внешнего источника питания.

Для тестирования кабельных линий также широко применяются рефлектомеры, способные определять различные дефекты кабеля локационным (рефлектометрическим) методом. Принцип работы устройств следующий:

На жилы тестируемого кабеля подаются коротковолновые электрические импульсы. При наличии в кабеле каких-либо дефектов, подаваемый импульс отражается от препятствия и возвращается обратно к прибору.

Возвращенный сигнал улавливается датчиками рефлектомера, измеряется, анализируется, после чего результат измерений отображается на дисплее.

Таким образом, при помощи рефлектомеров можно обнаружить обрывы, короткие замыкания, перепутанные пары, плотную землю и другие дефекты, которые имеют место в том числе при повреждении изоляции кабеля.

Требования и методика испытания кабелей связи

Измерение параметров кабелей связи (изоляции) - процесс несложный, но требует соблюдения установленных нормативной документацией (в частности - ГОСТ 3345-76, ГОСТ 2990-78) требований. Если кратко:

Перед проведением работ кабель должен быть обесточен и отсоединен от всех оконечных устройств и проводников (если это, например, кабель ГТС, испытываемые жилы отсоединяются от клемм распределительных щитков). Нельзя проводить испытания мегаомметром над кабелями, расположенными в непосредственной близости с другими электросистемами, т. к. генерируемое прибором напряжение способно создавать мощные электромагнитные поля, которые могут нарушить работу этих систем. Нельзя проводить испытания воздушных линий связи в грозу. Испытываемые проводники (жилы) должны быть заземлены. Отсоединять испытываемый проводник от «земли» можно только после его подключения к соответствующим клеммам мегаомметра (т. е. сначала подключается прибор, а только затем провода отсоединяются от «земли»). Перед выполнением и после проведения измерений проводник должен быть освобожден от остаточного тока путем короткого замыкания. Эта операция также выполняется над измерительными щупами мегаомметра. Для получения точного результата ток пропускается по испытываемому проводнику в течение (и не более!) 1 минуты. После проведения испытаний прибору и испытываемому проводнику дают «остыть» в течение 2 и более минут, если в соответствующей документации к мегаомметру и/или кабелю не приведены другие цифры.

Все прочие требования к безопасности приведены в ГОСТ 2990-78.

Теперь рассмотрим процесс измерения сопротивления изоляции кабеля связи на примере коаксиальной пары без защитного экрана (будем измерять сопротивление изоляции жил). Согласно ГОСТ 2990-78, условная схема приложения напряжения к жилам кабеля выглядит следующим образом:

Жила «1» подключается к входу «R–» (вход также может быть обозначен, как «–», «Земля» или «З») мегаомметра. Жила «1» и вход «R–» мегаомметра заземляются.

Жила «2» подключается к входу-источнику напряжения «R+» («+», «Rx», «Линия» или «Л») мегаомметра.

Условная рабочая схема:

Процесс проведения измерений:

Сначала на мегаомметре устанавливают уровень выходного напряжения, который зависит от марки испытуемого кабеля (обычно для проверки кабелей связи достаточно подать напряжение в 500 В). После подачи напряжения в цепь мегаомметру потребуется около 1 минуты для проведения измерений. Если это стрелочный прибор, необходимо дождаться ее полной остановки, для этого мегаомметр должен находиться в неподвижном состоянии. В случае с цифровыми приборами делать это необязательно.

При необходимости измерения проводят несколько раз. Как было сказано выше, перед каждой процедурой прибору дают «остыть» в течение примерно 2 минут (плюс-минус - зависит от характеристик мегаомметра).

На показания сильно влияет температура окружающей среды (чем она выше, тем ниже сопротивление и наоборот). Если ее значение отлично от +20 градусов, необходимо воспользоваться следующей «корректирующей» формулой:

R_(20)=K*R_1, где:

R_(20)– сопротивление изоляции кабеля (в нашем случае сопротивление изоляции жил) при +20 °С (указывается в паспорте к марке кабеля);

R_1 - сопротивление, полученное в результате измерений при температуре, отличной от +20 °С;

K - «корректирующий» коэффициент, позволяющий определить такое значение сопротивления изоляции, которое бы имело место при +20 °С (коэффициенты приведены в приложении к ГОСТ 3345-76).

Например, возьмем кабель КТПЗБбШп с полиэтиленовой изоляцией, первоначальное сопротивление которой (без оконечных устройств) составляет 5000 МОм. После измерения сопротивления жил при температуре в 15 °С получили результат, допустим, в 11 500 МОм. Согласно ГОСТ 3345-76, поправочный коэффициент «K» в случае с полиэтиленовой изоляцией жил составляет 0,48. Подставив это значение в формулу, имеем:

R_(20)=0,48*12500=5520 (сопротивление при нормальных условиях)

По следующей формуле можно определить сопротивление изоляции в зависимости от длины кабеля:

R=R_(20)* l, где:

R_(20)– сопротивление изоляции при +20 °С;

l - длина испытываемого кабеля;

Возьмем ту же марку кабеля ТППэпБбШп длиной в 1,5 км. Нам известно первоначальное сопротивление изоляции жил при нормальных условиях - 5000 МОм. Отсюда:

R=6500* 1,5=7500 МОм

Компания «Кабель.РФ» является одним из лидеров по продаже кабельной продукции и располагает складами, расположенными практически во всех регионах Российской Федерации. Проконсультировавшись со специалистами компании, вы можете приобрести нужную вам марку кабеля связи по выгодным ценам.

cable.ru

Сопротивления изоляции кабеля | Предназначение, этапы работы, результаты, правила измерения – на промышленном портале Myfta.Ru

Измерение сопротивления изоляции кабеля является одним из главнейших пунктов испытания кабелей. Например, если оболочка, которая обладает свойствами, оберегающими кабель, повреждена, тогда возможны неприятные последствия, среди них распространенными являются различные нарушения в системе энергосбережения. Именно это является главной причиной, того, что нужно делать замер сопротивления изоляции кабелей.

Чтобы избежать людей электрическим током, пожарам и другим неприятным ситуациям и т.д., необходимо постоянно делать электроизмерения сопротивления изоляции кабелей ВВГ для того, чтобы выявить неисправные участки в электропроводке.

Для того чтобы сделать замер сопротивления, нужно начать с осмотра электропроводки, а также проводов. Нужно особенно уделить внимание на те кабеля, которые имеют присоединения к аппаратам защиты. Не должно быть оплавленных концов для того, чтобы кабель в процессе работы не нагревался, так как это может значительно усложнить работу. Например, кабель может нагреваться от неправильного присоединения жил к зажимам также причиной может быть, что автоматический выключатель находится в неисправном состоянии.

Для того чтобы сделать замер, нужно:

  1. Во-первых, выключить все электроприборы от всех кабелей и проводов, которые подлежат электроизмерению.
  2. Перед тем как делать измерение нужно убрать из осветительных приборов все лампочки. В то же время, должны быть включены все выключатели приборов освещения.
  3. Необходимо выключить электропитание кабелей и проводов.

После проведения всех вышеперечисленных указаний энергосистема будет полностью готова к измерению сопротивления изоляции.

Допустимое показание сопротивления изоляции кабеля должно быть выше 0,5 мОм. Если эти показатели не отвечают, тогда этот кабель должен пройти демонтаж.

Также нужно обязательно учесть, что определение сопротивления проводится только после его фазировки, а также проверки на целостность. Делать измерение сопротивления кабеля нужно с помощью мегаомметра. (Рис 1)

Если вы проводите измерение с большой величиной значения, его будет лучше делать, когда стрелка, которая колеблется, полностью успокоится. Также нужно, чтобы были вынуты все электроприборы из сети.

Запрещается определять сопротивление линий, которые находятся близко от других похожих линий.

Рис 1. Мегаомметр

Определение сопротивления проводится мегаомметром с напряжением 2500 (В) в течение 1 минуты.

  • (A – B; В – С; С – А), то есть меж фазными проводниками;
  • (А – N; B – N; C – N), также меж нейтральными и фазными проводниками;
  • (А – РЕ; В – РЕ; С – РЕ), также между землёй и фазными проводниками;
  • (N – PE), и, наконец, между землёй и нейтральными проводниками.

Есть некоторые правила, которые нужно учесть, когда будете делать измерение сопротивления изоляции кабеля:

  • Во-первых, для того, чтобы сделать замер, нужно знать точную температуру окружающего воздуха. Потому что, если будет отрицательная температура, а в кабельной массе будет находиться вода (даже в малых количествах), тогда она превратится в кусочки льда. А лед сам по себе есть диэлектриком, то есть он не имеет способностями проводимости. Тем более что при проведении изоляции вы не сможете определить эти кусочки льда, поэтому нужно сразу позаботиться о приемлемой температуре. Оптимальная температура должна быть не ниже +5°C (исключением являются случаи, которые оговорены в специальных инструкциях.).
  • Во-вторых, если сопротивление электропроводки, которая находится в рабочем состоянии менее 1 МОм, тогда вывод об их пригодности дается после сначала проводится специальная проверка этой электропроводки, которая состоит в действии на нее переменным током промышленной частоты, но с напряжением в 1 кВ, а потом делаются выводы об их пригодности.
  • В-третьих, нужно не забывать, что при измерении должны использоваться только гибкие провода (у них на концах специальные изолирующие рукоятки, а также перед контактными щупами у них находятся ограничительные кольца). Провода, которые соединяют, имеют минимальную длину.
  • В-четвертых, Для определения используется мегомметр от 1000 В и выше. Приборы, которые не прошли ежегодные государственные проверки, не допускаются к использованию.

Если напряжение в электроустановках выше 1000 (В), делать измерение сопротивления кабеля нужно проводить в диэлектрических перчатках.

Для того чтобы определить нормы сопротивления изоляции кабелей, нужно сначала сделать классификацию этих кабелей:

Классификация кабелей:

  • выше 1000 (В), то есть высоковольтные силовые;
  • ниже 1000 (В), то есть высоковольтные силовые;
  • а также кабели управления.

Соответственно, нормы сопротивления изоляции, разные для каждого вида кабелей, например:

  1. Для кабелей выше 1000 (В), высоковольтных - нет определенной нормы, но при этом сопротивление будет выше, чем 10 (МОм).
  2. Для кабелей ниже 1000 (В), низковольтных - сопротивление должно быть выше 0,5 (МОм).

Используются показатели высокого или низкого напряжения, все зависит от напряжения вашей электроустановки.

myfta.ru

Зачем измерять сопротивление изоляции кабеля

Сопротивление - это величина, которая отображает способность материалов сопротивляться прохождению электрического тока. Чем она ниже, тем меньше потерь электричества на проводниках и тем большее количество тока можно передать безопасно. Сопротивление изоляции кабеля позволяет оценить целостность оболочек, а значит, определить, пригодно ли изделие для использования.

От целостности изоляции электропроводок зависит безопасность и долговечность провода. Современные изделия имеют несколько оболочек для разных целей, расположенных друг под другом: защиты от электромагнитных помех, поражения током людей, разрыва, попадания влаги, воздействия агрессивных сред. Чтобы убедиться в целостности всех слоев, нужно проводить испытания. Их цель - убедиться в том, что оболочки не повреждены на всей длине изделия. Поэтому тест должен быть неразрушающим. Единственный вариант - измерить сопротивление изоляции кабеля.

Сопротивление проводника рассчитывается по формуле:

где R - искомая величина, удельное сопротивление материала (табличная величина), l - длина проводника, S - площадь сечения.

Из формулы видно, что, чем больше площадь проводника, тем ниже будет его сопротивление. На этом и основывается принцип испытания целостности через измерения изоляции кабеля. В случае её повреждения площадь, по которой проходит ток, уменьшится, как результат - повысится сопротивление. Результаты испытания изоляции кабелей и допустимое сопротивление изоляции должны быть равны или отличаться незначительно. Конкретные цифры поданы в сопутствующей изделиям технической документации. Также можно определить, сколько должно быть сопротивление по формуле, представленной выше. Значение берите из таблицы ниже, длина изделия измеряется в метрах, площадь - в мм2.

Нормы сопротивления изоляции кабеля: таблица удельных сопротивлений материалов при нормальных условиях

В работе понадобится специальный инструмент. Также есть несколько процедур, которые нужно провести перед тем, как начать испытание изоляции.

Условия для проведения теста

Перед тем как измерить сопротивление изоляции, нужно знать о микроклимате помещения. В таблице выше указаны удельные сопротивления материалов при нормальной температуре (+20°C). При повышении этого значения повышается удельное сопротивление материалов, а с ним - сопротивление изоляции проводов и кабелей. Снижение температуры влияет на показатель незначительно. Но, если между слоями есть лед, его не удастся выявить, так как вещество не проводит электричество.

Изменение удельного сопротивления высчитывается по формуле

где - удельное сопротивление при температуре +20°С, а - температурный коэффициент (табличное значение), t - температура воздуха.

Значение а - небольшое, например, для меди оно равно 0,0068, а для алюминия - 0,00429.

Идеальная температура воздуха для испытания - +20°С. При ней все результаты будут максимально приближены к табличным значениям. Если не удается создать нормальное термическое условие, то нужно позаботиться о том, чтобы в помещении температура была выше 0°С, иначе не удастся выявить наличие влаги под оболочками.

Оборудование

Замер сопротивления изоляции выполняют с помощью мегаомметра. Существует оборудование для разных типов проводки и для определения разных характеристик. Некоторые устройства способны предоставить просто значения, другие определяют наличие воды, влажность оболочек.

Измерение сопротивления изоляции кабеля - настолько важная процедура, что за ней следят государственные органы. Испытания можно проводить только с использованием оборудования, которое внесено в специальный реестр. Ежегодно приборы отдаются на проверку работоспособности, после которой на них наносят голограмму, штамп с информацией о сроке годности.

При выборе устройств для измерений сопротивления изоляции проводов нужно руководствоваться следующим:

  • Тип проводников, которые будут тестироваться. В зависимости от него, подбирается диапазон, в котором способен работать мегаомметр.
  • Тип индикации. Существуют аналоговые (со стрелкой и циферблатом), световые, графические приспособления. Точность каждого из них гарантирует государственный орган контроля (если изделие внесено в соответствующий реестр) - тип индикации влияет лишь на простоту, скорость работы. Удобнее всего использовать изделия с дисплеем. Но они при прочих равных условиях стоят дороже остальных.
  • Климатическое исполнение. Для измерения сопротивления изоляции в условиях Крайнего Севера нужны особые модели.
  • Компактность. Зависит от источника питания - электрогенератор, аккумулятор, гальванический элемент.
  • Дополнительные возможности. Существуют мультиметры, в конструкции которых предусмотрен мегаомметр. С ними можно не только проверить сопротивление изоляции, но и померить напряжение, силу тока, коэффициент абсорбции (силу поглощения влаги).

Мегоомметр с дисплеем позволяет проводить измерение сопротивление изоляции в разы быстрее

Классификация проводов

При измерениях сопротивлений важны типы кабелей. Существуют разные классификации. Для данных целей важно напряжение, которое можно пропускать через изделие. В зависимости от него продукция делится на следующие типы:

  • Высоковольтные - для тока свыше 1000 Вольт.
  • Низковольтные - для напряжения до 1000 Вольт;
  • Контрольные - провода, которые используют в оборудовании. К ним относятся вторичные цепи РУ, цепи питания отделителей, управляющих элементов, защиты, автоматики.

В зависимости от типа проводки используется соответствующий прибор для проверки.

Нормы

Существуют нормативы, по которым определяется пригодность изделий к эксплуатации в зависимости от результатов измерения сопротивления изоляции (из расчета на 1000 метров):

  • для высоковольтных - не ниже 10 МОм;
  • для низковольтных - не менее 0,5 МОм;
  • контрольные - не ниже 1 МОм.

Подробнее о нормах сопротивления изоляции кабеля - в п. 6.2. ПТЭЭП и п. 1.8.37 ПУЭ.

Испытанию подлежат все проводники. Отличаются временные промежутки, с которыми проводят измерение сопротивления изоляции электропроводки:

  • замеры проводников мобильных электроустановок - не реже одного раза в полгода;
  • электропроводка наружных электроустановок, а также оборудования, установленного в опасных помещениях, проверяется на соответствие нормам раз в год.
  • проверка сопротивления изоляции остальных выполняется раз в три года.

Проведение подобных испытаний необходимо, в первую очередь, для обеспечения безопасности сети. Это не просто требование органов контроля, которое нужно проводить «для галочки». Поэтому интервалы, с которыми проводят проверку, могут изменяться. Следует проводить внеочередные тесты, если есть подозрения, что изоляция могла быть повреждена.

Работа с проводниками различных типов

Порядок того, как проверить защиту изделий, зависит от их типа. Алгоритм работы с каждым видом проводников несколько отличается. Поэтому нужно рассмотреть инструкции по работе с разными вариантами электропроводки.

Общим для всех случаев правилом является проверка наличия напряжения в сети с помощью специальных приборов. Если состояние кабеля достоверно неизвестно, он считается активным.

Сопротивление оболочек измеряют следующим образом:

  1. Устанавливают испытательное заземление на непроверяемые жилы. Зажимы монтируют на сторону, с которой будет проводиться тестирование.
  2. Разводят друг от друга жилы кабеля, находящиеся с противоположной от заземления стороны.
  3. Устанавливают/включают предупреждающие и запрещающие знаки - плакаты, конусы, световые таблички. Для большей безопасности рекомендуется поручить кому-нибудь охранять территорию, на которой проводится проверка изоляции.
  4. Проверять кабельную продукцию с помощью мегаомметра на 2,5 кВ в течение 1 минуты.
  5. Записать результаты замера в блокнот.

При работе с высоковольтными проводами испытания проводятся на каждой жиле. Если нужно проверить изоляцию на низковольтных кабелях, тестируют следующие пары:

  • А-РЕ;
  • В-РЕ;
  • нуль и земля, предварительно отсоединив первый от нулевой шины.

Особенность работы с контрольной проводкой

Контрольную проводку можно тестировать на оборудовании, не отключая жилы от схемы. Немного отличается способ подсоединения оборудования:

  • Один вывод мегаомметра подключают к испытуемой жиле.
  • Второй щуп присоединяют либо к заземлению, либо к неиспытуемой жиле.
  • Остальные жилы соединяют между собой и заземляют.

Что потребуют органы контроля?

Органы государственного контроля, в частности пожарная инспекция, могут потребовать протоколы измерения сопротивления изоляции. В них содержится информация о полученных данных, условиях, при которых проведено испытание, приборе, исполнителе. Поэтому подобную работу можно доверить только организации, у которой есть разрешение на выполнение подобных исследований. Если замеры сделает обычный электрик, протокол не будет иметь силы.

Хорошо, если работник организации умеет выполнять подобную работу. Контроль сопротивления изоляции стоит осуществлять для себя, чтобы быть уверенным в качестве используемых проводников, их безопасности для имущества и окружающих.

Выбор редакции
Что можно сделать из гальки своими руками? Воспользуйтесь этими идеями, и вы увидите, что камень – идеальный материал для декора.Морские...

Печальная красота осени, сотни оттенков золота, яркие красные пятна кленов, нежно-розовые бересклеты… Так хорошо сидеть ясным октябрьским...

Строительство частного дома всегда начинается с подготовки и заливки фундамента. Обустройство основания дома – один из самых важных и...

Подсветка для рассады как и что выбирать Энергосберегающие Люминесцентные Фитолампы Отражатели света Подсветка для рассады лампами и...
Яблоки нравятся практически всем людям. Но получить их урожай самостоятельно в любом случае приятнее, нежели приобретать в магазине...
Трудно назвать комфортным проживание без правильно работающей канализации, представляющей собой систему удаления сточных вод. Городские...
Цугунов Антон ВалерьевичВремя на чтение: 6 минут Изношенность коммунальных систем привела к низкому качеству воды, подаваемой в...
Вода – это источник жизни и здоровья. Но принести пользу человеку может только чистая вода. Чтобы избавиться от лишних химических...
Горный велосипед Основными особенностями горного велосипеда являются широкие (1.5 - 2.5 дюймов, вместо обычных 20-40 мм) колеса, чуть...