Автотрансформаторы особенности конструкции принцип действия характеристики. Назначение и устройство автотрансформаторов


Автотрансформатор является одним из вариантов трансформатора, имеющего первичную и вторичную обмотки, подсоединенные напрямую.

Благодаря такой особенности устройство обладает не только магнитной, но и электрической связью.

Устройство и принцип действия автотрансформаторов рассмотрим в статье.

Что такое автотрансформатор?

С общей точки зрения трансформаторы - приборы, предназначенные для преобразования показателей тока входного типа с одного напряжения на выходные токи другого напряжения. Если необходимо произвести замену уровня напряжения в незначительных пределах, то самым оптимальным вариантом станет применение однообмоточного прибора, также известного под названием автотрансформатор.

При коэффициенте трансформации на уровне единицы осуществляется полное поступление энергии непосредственно к заключительному потребителю.

Регулирование обеспечивается секционированной обмоткой внутри автотрансформатора, а сам прибор характеризуется удобством и ремонтопригодностью.

Автотрансформаторы обладают достаточно простой и интуитивно понятной конструкцией, что совершенно не умаляет достоинств такого прибора, но несколько ограничивает сферу применения.

Отличие автотрансформатора от трансформатора

Классические трансформаторы обладают не связанными друг с другом первичными и вторичными обмотками, поэтому процесс передачи энергии в таких устройствах обусловлен наличием магнитного поля.

На объединенной обмотке автотрансформатора располагается три вывода или более, при подключении к которым есть возможность получить различные показатели уровня напряжения.

В условиях малых коэффициентов трансформации, в пределах одной-двух единиц, любые автотрансформаторы показывают более высокую эффективность по сравнению с трансформаторными устройствами. Кроме всего прочего, такие приборы более легкие по весу и доступнее по стоимости, чем традиционные трансформаторы многообмоточного типа.

Устройство автотрансформатора

Однако, сравнивая основные характеристики автотрансформатора и классического трансформатора, можно смело утверждать, что второй вариант является максимально универсальным, а также отличается более широким диапазоном работы в процессе эксплуатации.

Автотрансформаторы характеризуются фактическим наличием одной обмотки с отходящими выводами, что обеспечивает высокоэффективную электромагнитную и электрическую связь.

Преимущества и недостатки

Основные преимущества автотрансформаторов закономерно снижаются в условиях повышения трансформирующего коэффициента, и именно по этой причине агрегаты такого типа недопустимо использовать при питании распределительной электрической сети 220 В от напряжения шесть тысяч Вольт.

Таким образом, достоинства автотрансформатора максимально проявляются при наименьшем коэффициенте трансформации, и в этом случае бывают представлены:

  • незначительным расходом стали для изготовления сердечника;
  • пониженным расходом меди для производства обмоток;
  • простотой и незначительными габаритами конструкции;
  • почти максимальным коэффициентом полезного действия, достигающим показателей 99 %;
  • меньшими потерями на обмотках и стальных магнитных проводах;
  • частичной передачей энергии с использованием электрических связей;
  • достаточной полезной мощностью;
  • наименьшими изменениями напряжения в условиях смены нагрузки;
  • доступной для рядового потребителя стоимостью.

При наличии высшего и низшего напряжения в условиях одного порядка отсутствуют препятствия для электрического соединения цепей.

Основные недостатки автотрансформатора заключаются в малом сопротивлении короткого замыкания, объясняющим высокую токовую кратность и возможность передачи высшего напряжения в сеть с низкими показателями, что обусловлено наличием электрической связи. Низковольтная схема внутри устройства напрямую зависит от наличия в сети достаточно высокого уровня напряжения, поэтому для предотвращения сбоев разрабатываются специальные схемы.

Лабораторный автотрансформатор

Кроме всего прочего, небольшое рассеивание, возникающее между обмотками, может спровоцировать короткое замыкание. Важно помнить, что соединение между обмотками в обязательном порядке должно быть максимально равномерным, а нейтраль обладает исключительно двумя блоками.

Следует отметить, что из-за конструктивных особенностей автотрансформатора достаточно проблематично сохранять целостность электромагнитного баланса, а балансировка потребует увеличения габаритов, что негативно сказывается на весе и стоимости прибора.

Устройство автотрансформатора

Для электромагнитного устройства статического типа характерно наличие одной обмотки, часть которой одновременно отвечает как за первичную, так и за вторичную сеть. Таким образом, в автотрансформаторе существует не только магнитная, но и электрическая связь, которая возникает между обмотками первичного и вторичного вида. В настоящее время прибор выпускается в виде одно- и трехфазного, а также двух- или трехобмоточного устройства.

Двухобмоточный трансформатор и автотрансформатор

Автотрансформаторы имеют определенный тип конструкции и некоторые особенности, представленные первой обмоткой, которая используется в качестве части второго контура агрегата или наоборот.

Поломку трансформатора можно определить при помощи мультиметра. – особенности прямого и косвенного методов проверки.

Схему подключения трансформатора с трех мест вы найдете .

С принципом действия трансформатора 220 на 12 вольт вы можете ознакомиться .

Принцип действия

Наиболее важные характеристики принципа действия стандартного автотрансформатора определены особенностью подключения обмоточной части.

В процессе подключения к катушке тока переменного типа внутри сердечника отмечается наличие магнитного потока.

Каждый виток на этом этапе эксплуатации прибора характеризуется индукцией электродвижущей силы с идентичной величиной.

Таким образом, принцип работы прибора объясняется стандартной схемой автотрансформатора, а в результате подсоединения нагрузки наблюдается перемещение вторичного электрического потока по обмотке. В это же время по проводнику осуществляется движение первичного тока. В результате величины двух потоков суммируются, поэтому на участок обмотки осуществляется подача незначительных по величине показателей электрического тока.

Как показывает практика эксплуатации автотрансформаторов, по некоторым основным параметрам принцип работы такого прибора имеет не слишком существенные отличия от традиционных трансформаторов двухобмоточного типа.

В настоящее время наряду с однофазными приборами находят достаточно широкое применение и устройства трехфазного типа, отличающиеся обмоткой. Существуют современные трёхфазные автотрансформаторы, имеющие два и три контура.

Основные защитные характеристики автотрансформатора представлены несколькими вариантами:

  • дифференциальная разновидность, предупреждающая выход из строя при любых нарушениях в обмотке;
  • принцип токовой отсечки, корректирующий неполадки, возникшие на ошинковках или вводах;
  • высокоэффективная токовая защита, которая четко срабатывает в условиях повреждения агрегата;
  • газовый вид, оповещающий даже о выделениях или понижении количества маслянистой жидкости.

Конструкцией предусмотрена защита при появлении замыкания или перегрузки, но прибор не подлежит эксплуатации, если замечено повреждение изолирующего слоя, отмечается сбой на соединительных участках, присутствуют сторонние звуки или слишком сильная вибрация, а также прибор имеет на корпусе выраженные трещины или многочисленные сколы.

Видео на тему

Трансформатор, в общем смысле, предназначается для преобразования входного тока одного напряжения в выходной ток другого напряжения. В случаях, когда возникает необходимость изменить напряжение в небольших пределах, проще и целесообразнее использовать для этих целей однообмоточный трансформатор - так называемый автотрансформатор, вместо двухобмоточного.

Итак, автотрансформатор - это один из вариантов электрического трансформатора, в котором первичная и вторичная обмотки соединены напрямую, благодаря чему, имеют и электромагнитную и гальваническую связь.

Объединенная обмотка автотрансформатора имеет минимум 3 вывода. Подключаясь к этим выводам, можно получать разные напряжения. При малых коэффициентах трансформации от 1 до 2, автотрансформаторы эффективнее, легче и дешевле, чем многообмоточные трансформаторы.

Главное преимущество автотрансформатора - это высокий коэффициент полезного действия (КПД), который достигает 99%. Это связано с тем, что преобразованию подвергается лишь часть мощности. В условиях, когда входное и выходное напряжение отличаются незначительно - это является существенным плюсом, поскольку потери на преобразовании минимальны.

Главный недостаток автотрансформаторов заключается в том, что здесь нет гальванического обособления первичной и вторичной электрических цепей при помощи изоляции, как в обычном трансформаторе. Т.е. здесь невозможно создание так называемой «гальванической развязки», поэтому при высоких коэффициентах преобразования велика вероятность возникновения короткого замыкания, или возникновения пробоя автотрансформатора.

Применение автотрансформаторов экономически оправдано при соединении эффективно заземленных сетей с напряжением более 110 кВ, а также коэффициентом трансформации менее 3-4, поскольку потери электроэнергии меньше чем у обычного электрического трансформатора. Ещё одним экономическим обоснованием для применения автотрансформатора является тот факт, что для его производства используется меньшее количество меди для обмоток и электротехнической стали для сердечника, поэтому вес и габариты автотрансформатора меньше, а его стоимость ниже.

Автотрансформаторы применяются в качестве преобразователей электрического напряжения в пусковых устройствах различных электродвигателей переменного тока, включая самые мощные, для плавной регулировки напряжения в схемах релейной защиты и др. Регулирующие автотрансформаторы, благодаря возможности механического перемещения точки отвода вторичного напряжения, позволяют сохранить вторичное напряжение постоянным при изменении первичного напряжения. При этом, один и тот же автотрансформатор может быть как повышающим, так и понижающим - все зависит от включения обмоток.

Лабораторные автотрансформаторы регулируемые (ЛАТРы)

В низковольтных сетях также используются автотрансформаторы, как лабораторные регуляторы напряжения небольшой мощности. В таких автотрансформаторах напряжение регулируется путем перемещения скользящего контакта по виткам обмотки.

ЛАТРы изготавливаются путем однослойной обмотки изолированным медным проводом кольцеобразного ферромагнитного магнитопровода. Такая обмотка имеет несколько постоянных ответвлений, что позволяет использовать ЛАТРы как понижающие или повышающие трансформаторы с определенным постоянным коэффициентом трансформации. Дополнительно, на поверхности медной обмотки, очищенной от изоляции, насечена узкая дорожка, по которой может перемещаться роликовый или щеточный контакт. Это сделано для того, чтобы получить плавность регулирования вторичного напряжения в пределах от 0 до 250В. Стоит отметить, что витковых замыканий, при замыкании соседних витков в лабораторном трансформаторе, не происходит, поскольку токи сети и нагрузки в совмещенной обмотке автотрансформатора близки относительно друг друга и направлены встречно. ЛАТРы изготавливаются номинальной мощностью от 0,5 до 7,5 кВА.

Применение автотрансформаторов помогает улучшить КПД различных энергосистем и обеспечить снижение стоимости передачи энергии, однако, приводит к повышению опасности возникновения короткого замыкания.

Преимущества автотрансформаторов по сравнению с обычными трансформаторами:

  • пониженный расход активных материалов, таких как медь и электротехническая сталь,
  • повышенный КПД энергосистемы (до 99,7%)
  • сниженные размер и вес
  • невысокая стоимость

Недостатки применения автотрансформаторов относительно обычных электрических трансформаторов:

  • Снижение эффективности при больших (больше 3-4) коэффициентах трансформации;
  • Из-за того, что первичная и вторичная обмотка соединены в одну обмотку автотрансформатора, и имеют электрическую связь, он не может быть использован как понижающий силовой трансформатор для сетей, напряжением, скажем, от 6 до 10 кВ. Это связано с тем, что, в случае возникновения аварии, все части автотрансформатора, и подключенных электроприборов окажутся связаны с высоковольтным оборудованием питающей сети. Это не допускается техникой безопасности обслуживания и из-за возможности пробоя изоляции токопроводящих частей присоединенного электрооборудования, с которым работают люди.

Автотрансформаторы успешно конкурируют за потребителя, наряду с двух- и даже трехобмоточными электрическими трансформаторами. Автотрансформаторы относительно не дороги, удобны, могут выполнять функции как повышения, так и понижения, и являются идеальным выбором для сетей с невысоким напряжением и коэффициентом трансформации.

В некоторых случаях бывает необходимо изменять напряжение в небольших пределах. Это проще всего сделать не двухобмоточными трансформаторами, а однообмоточными, называемыми автотрансформаторами. Если коэфициент трансформации мало отличается от единицы, то разница между величиной токов в первичной и во вторичной обмотках будет невелика. Что же произойдет, если объединить обе обмотки? Получится схема автотрансформатора (рис. 1).

Автотрансформаторы относят к трансформаторам специального назначения. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и гальваническую связь.

В зависимости от включения обмоток автотрансформатора можно получить повышение или понижение напряжения.

Рис. 1 Схемы однофазных автотрансформаторов: а - понижающего, б - повышающего.

Если присоединить источник переменного напряжения к точкам А и Х, то в сердечнике возникнет переменный магнитный поток. В каждом из витков обмотки будет индуктироваться ЭДС одной и той же величины. Очевидно, между точками а и Х возникнет ЭДС, равная ЭДС одного витка, умноженной на число витков, заключенных между точками а и Х.

Если присоединить к обмотке в точках a и Х какую-нибудь нагрузку, то вторичный ток I2 будет проходить по части обмотки и именно между точками a и Х. Но так как по этим же виткам проходит и первичный ток I1, то оба тока геометрически сложатся, и по участку aХ будет протекать очень небольшой по величине ток, определяемый разностью этих токов. Это позволяет часть обмотки сделать из провода малого сечения, чтобы сэкономить медь. Если принять во внимание, что этот участок составляет большую часть всех витков, то и экономия меди получается весьма ощутимой.

Таким образом, автотрансформаторы целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток что позволяет выполнить ее более тонким проводом и сэкономить цветной металл. Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора.

В электромагнитных преобразователях энергии - трансформаторах - передача энергии из одной обмотки в другую осуществляется магнитным полем, энергия которого сосредоточена в магнитопроводе. В автотрансформаторах передача энергии осуществляется как магнитным полем, так и за счет электрической связи между первичной и вторичной обмотками.

Автотрансформаторы успешно конкурируют с двухобмоточными трансформаторами, когда их коэффициент трансформации - мало отличается от единицы и но более 1,5 - 2. При коэффициенте трансформации свыше 3 автотрансформаторы себя не оправдывают.

В конструктивном отношении автотрансформаторы практически не отличаются от трансформаторов. На стержнях магнитопровода располагаются две обмотки. Выводы берутся от двух обмоток и общей точки. Большинство деталей автотрансформатора в конструктивном отношении не отличаются от деталей трансформатора.

Автотрансформаторы бывают повышающие и понижающие, однофазные и трехфазные. Применяются они для питания бытовых приборов, пуска асинхронных электрических двигателей, в промышленных электрических сетях. В быту автотрансформаторы используют для регулировки напряжения сети, если оно завышено или занижено. В промышленности с их помощью уменьшают пусковые токи электрических двигателей, повышают напряжение в линиях электропередач для уменьшения потерь.

Чем отличается автотрансформатор от трансформатора

У обычного трансформатора первичные и вторичные обмотки электрически не связаны, энергия между ними передается посредством магнитного поля. Автотрансформатор фактически имеет одну обмотку, от которой отходят выводы. Помимо электромагнитной связи, обмотки автотрансформатора связаны электрически.

Устройство автотрансформатора

В простейшем случае, на замкнутом магнитопроводе располагаются две обмотки соединенные последовательно. В зависимости от варианта подключения источника энергии и нагрузки, автотрансформатор может работать как повышающий или как понижающий.

Существует конструкция, в которой реализован механизм ручного регулирования выходного напряжения (Вариак, ЛАТР). Так же применяются блоки автоматической регулировки с обратной связью, по сути, автотрансформатор с таким устройством можно назвать стабилизатором напряжения.

В автотрансформаторе энергия передается не только магнитным потоком, но и электрически, так как обмотки имеют гальваническую связь. Чем ближе коэффициент трансформации к 1, тем меньше энергии передается электромагнитным способом.

Ниже вы видите схему понижающего автотрансформатора, к первичной обмотке которого подключен источник переменного напряжения, а к выводам вторичной обмотки подключена нагрузка, в виде лампы накаливания.

В режиме холостого хода автотрансформатор работает так, как и обычный трансформатор. Когда подключена нагрузка, переменный магнитный поток возникающий в сердечнике индуктирует в витках вторичной обмотки ЭДС, направленную навстречу ЭДС источника энергии. Поэтому ток протекающий по вторичной обмотке равен разнице между током нагрузки и током первичной цепи. Это позволяет вторичную обмотку изготавливать из провода малого диаметра. Экономия на меди, тем меньше, чем больше коэффициент трансформации отличается от единицы.

Автотрансформатор эффективнее трансформатора и дешевле в изготовлении, при условии, что коэффициент трансформации не сильно отличается от единицы. Существенным недостатком с точки зрения безопасности, является отсутствие гальванической развязки между обмотками.

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов к жиле и ее экрану. , полученное в результате измерений, должно быть не менее нормированного значения, установленного для данной марки кабеля.

Измерив сопротивление изоляции, переходят к установлению или нумерации жил, или направлений повива, которые указывают стрелками на временно закрепленных бирках (рис. 1).

Закончив подготовительные работы, можно приступать к разделке кабелей. Геометрию разделки соединений концов кабелей видоизменяют в целях обеспечения удобства восстановления изоляции жил и оболочки, а для многожильных кабелей также для получения приемлемых размеров места соединения кабелей.

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.
Выбор редакции
1:502 1:511 КАК ПРАВИЛЬНО ВЫРАЩИВАТЬ МАЛИНУ И УХАЖИВАТЬ ЗА НЕЙ, ЧТОБЫ ОНА ПЛОДОНОСИЛА 14 ЛЕТ ПОДРЯД! 1:675 1:684 Вы удовлетворены...

Удивительный цвет, аромат, распространяющийся по всему саду, пышные бутоны – вот самые подходящие характеристики пионов. Со временем было...

Понравилось? Электрокотлы Зота производятся на красноярском «Заводе отопительной техники и автоматики ». Российскому рынку они известны...

В комбинированный котел VIADRUS U 22 C можно загрузить любое твердое топливо – от каменного угля до древесины. Причем, независимо от типа...
Сверхъяркие светодиоды, изобретенные относительно недавно, уже прочно вошли в нашу жизнь. Компактные и экономичные, они с успехом...
Рококо, как и все исторически сложившиеся стили, сумел не только получить широкое распространение во время своего расцвета, но и...
Косметический ремонт или финишная отделка после выравнивания поверхностей и других серьезных мероприятий – это простор для творчества и...
Сама идея устройства для получения дармовой энергии из эфира неизменно была очень востребована. Не только аматёры, но и многие именитые...
Этот генератор предназначен для настройки каскадов приемников CВ и ДВ диапазонов. Генератор вырабатывает синусоидальные колебания и...